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Abstract

Can neural networks learn goal-directed behaviour using similar strategies to the
brain, by combining the relationships between the current state of the organism and
the consequences of future actions? Recent work has shown that recurrent neural net-
works trained on goal based tasks can develop representations resembling those found
in the brain, entorhinal cortex grid cells, for instance. Here we explore the evolution of
the dynamics of their internal representations and compare this with experimental data.
We observe that once a recurrent network is trained to learn the structure of its envi-
ronment solely based on sensory prediction, an attractor based landscape forms in the
network’s representation, which parallels hippocampal place cells in structure and func-
tion. Next, we extend the predictive objective to include Q-learning for a reward task,
where rewarding actions are dependent on delayed cue modulation. Mirroring exper-
imental ndings in hippocampus recordings in rodents performing the same task, this
training paradigm causes nonlocal neural activity to sweep forward in space at decision
points, anticipating the future path to a rewarded location. Moreover, prevalent choice
and cue-selective neurons form in this network, again recapitulating experimental nd-
ings. Together, these results indicate that combining predictive, unsupervised learning
of the structure of an environment with reinforcement learning can help understand the
formation of hippocampus-like representations containing both spatial and task-relevant
information.

1 Introduction
Recurrent neural networks have been used to perform spatial navigation tasks and the subsequent
study of their internal representations has yielded dynamics and structures that are strikingly bio-
logical. Metric (Cueva and Wei, 2018; Banino et al., 2018) and non-metric (Recanatesi et al., 2019)
representations mimicking grid (Fyhn et al., 2004) and place cells (O’Keefe and Nadel, 1978) respec-
tively form once the recurrent network has learned a predictive task in the context of a complex
environment. Cueva et al. (2020) demonstrates not only the emergence of characteristic neural rep-
resentations, but also hallmarks of head direction system cells when training a recurrent network
on a simple angular velocity integration task. Biologically, non-metric representations are associated
with landmark spatial memory, in which place cells within the mammalian hippocampus re when
the associated organism is present in a corresponding place eld. Extraeld ring of place cells oc-
curs when these neurons spike outside of these contiguous place eld regions. Here we show that
recurrent neural networks (RNNs) not only form corresponding attractor landscapes, but also pro-
duce representations with internal dynamics that closely resemble those found experimentally in the
hippocampus when performing goal-directed behaviour.

Research in neuroscience such as that of Johnson and Redish (2007), shows that spatial representations
in mice in the CA3 region of the hippocampus frequently re nonlocally. Grin et al. (2007) show that
a far higher proportion of hippocampal neurons in the CA1 region in rats performing an episodic task
in a T-shapedmaze encode the phase of the task rather than spatial information (in this case trajectory
direction). Ainge et al. (2007) show CA1 place cells encode destination location at the start position of
a maze. Lee et al. (2006) demonstrate that place elds of CA1 neurons gradually drift toward reward
locations throughout reward training on a T-shaped maze.
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In this work we show that a recurrent neural network learning a choice-reward based task using re-
inforcement learning, in conjunction with predictive sensory learning in a T-shaped maze produces
an internal representation with consistent extraeld ring associated with consequential decision
points. In addition we nd that the network’s representation, once trained, follows a forward sweep-
ing pattern as identied by Johnson and Redish (2007). We then show that a higher proportion of
units in the trained network show strong selectivity for the encoding or choice phase of the task than
the proportion showing selectivity for spatial topology. Importantly, these properties only emerge
during predictive learning, where task learning is much faster compared to traditional deep Q learn-
ing.

2 Method

Figure 1: Left, the wall observation and cue received by the network at each timestep. Right, the
entangled predictive task the LSTM network is pre-trained on in order to generate a non-metric map
of the maze environment.

We use a form of the cued-choice maze used by Johnson and Redish (2007) which has a central T
structure with returning arms, shown in Figure 1. All walls of the maze are tiled with distinct RGB
colours which are generated at random and remain xed throughout. An agent is initially learning
to predict the next sensory stimulus given its movement. This combination of unsupervised learning
and exploration has been shown previously to produce place cell-like encoding of the agent’s position
(Recanatesi et al., 2019). Next, rewards at four possible locations are introduced and the agent is tasked
with associating a cue with the rewarding trajectory. The agent has four vision sensors, one in each
cardinal direction, reading the wall RGB colours they intersect. The cue tone is played to the agent
as it passes the halfway point of the central maze stem. A low frequency cue indicates that the agent
will turn left at the top of the maze stem and a high frequency cue indicates a right turn. These cue
tones take the form of a high or low valued scalar perturbed with normally distributed noise if at a
cue point, with a zero value given at all other locations. These four RGB colours as well as the cue
frequency at the current location make up the total input received by the agent.

The agent is controlled by a recurrent neural network comprised of a 380 unit Long-Short term mem-
ory (Hochreiter and Schmidhuber, 1997) (LSTM) network with a single layered readout for the pre-
diction of RGB values. We rst pre-train the network by tasking it with predicting the subsequent
observation of wall colours from the currently observable wall colours given its trajectory through
the maze. The agent’s starting location is at the bottom of the central stem of the T maze and a tra-
jectory of left or right at the top of the central stem is chosen pseudorandomly, depicted with red and
blue arrows respectively in Figure 1 and corresponding to the low (red trajectory) or high (blue trajec-
tory) cue tone value given halfway up the stem. As in the experiments by Johnson and Redish (2007),
during pre-training the agent does not choose any of its actions and is only learning to predict the
sequence of wall colors it encounters. In a given pre-training iteration, we collect all observations as
the agent traverses the maze until it returns to the start location at the bottom of the central stem and
nally train the LSTM on the entire collected trajectory. The network is trained with a mean-squared
error loss of predicted and target wall colours (Eq. 1), with model parameters optimised using Adam
(Kingma and Ba, 2015) and a learning rate of 0.001.

𝑙𝑜𝑠𝑠𝑟𝑔𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑟𝑔𝑏 − (𝑊𝑟𝑔𝑏ℎ𝑡 + 𝑏𝑟𝑔𝑏))2 (1)
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To solve this task, the network has to maintain the cue tone played in its internal memory for several
time steps in order to predict subsequent wall colours from the top of the central stem. In our model,
this is achieved through the network forming a non-metric representation (attractor landscape) of the
maze environment, as also demonstrated by Xu and Barak (2020). Similarly, behavioural experiments
typically have a comparable familiarisation phase with the environment before reward-based tasks
are introduced (Johnson and Redish, 2007; Grin et al., 2007).

Figure 2: For the joint task to be learned by the LSTM network, we introduce secondary cue points,
where the same cue tone as that played at the primary cue point will be repeated if and only if the
agent has proceeded in turning in the direction corresponding to the cue tone frequency given at the
primary cue location. The agent is free to choose the next action to be taken when traversing the
maze at either the choice point at the top of the stem of the maze or at the secondary cue locations.
There are two potential reward sites on both returning arms, with the reward sites being active if the
agent is on the returning arm corresponding to the cue tone frequency.

Once the LSTM has formed an internal representation of the maze, the agent is tasked with navigating
towards potential reward sites whose location is indicated by the cue signal: a low frequency cue
indicates active reward sites on the left return arm and a high frequency cue indicates active reward
sites on the right return arm - the cue tone and corresponding side of active reward sites are together
chosen randomly at each iteration with a secondary cue given if the agent has turned correctly. In
this phase there are three choice points wherein the agent is able to choose its next action and is
constrained to follow the forward maze direction elsewhere: at the top of the maze stem and at the
two secondary choice points (Figure 2), with initially randommovement at these points during reward
training. There are 5 steps between the cue and choice points and 7 steps from the choice point to
the rst reward site on either return arm. The inclusion of the secondary cues as additional choice
points was motivated by the experimental set up used by Johnson and Redish (2007), to compare the
network activity at these points to experimental data. These secondary points also give the agent
the opportunity to backtrack on its decision made at the primary choice point in light of further
environmental observation (the presentation or lack thereof of the secondary cue), and make learning
more ecient in our model. This may explain how it speeds up training the animals in the same
task.

We additionally introduce a new single layered readout for the LSTM network which predicts state-
action values associated with the four cardinal directions in relation to the agent’s current position
and direction. At each timestep, this ensemble receives the agent’s environment observation and the
agent follows an epsilon-greedy policy (starting with fully random movement at choice points and a
decaying epsilon thereafter) for choosing optimal actions of those available at each of the three choice
points.

The recurrent network controlling the agent is trained on aweighted combined loss of a reinforcement
learning (RL) task loss and the previously described predictive wall colour loss:

𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = |𝑄 (𝑠, 𝑎) − (𝑟 + 𝛾 ·𝑄 ′(𝑠 ′, argmax
𝑎′

𝑄 (𝑠 ′, 𝑎′)) | + 𝜆 · 𝑙𝑜𝑠𝑠𝑟𝑔𝑏 (2)
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The rst component of this loss is the dierence between predicted and observed state-action values
which are represented by Q-values (Watkins and Dayan, 1992), which are a prediction of future global
reward:

𝑄 (𝑠, 𝑎) =𝑊𝑄ℎ𝑡 + 𝑏𝑄 (3)

We use double-Q learning (Van Hasselt et al., 2016) to train the agent on the task, updating the target
Q value predictor (𝑄 ′ - a LSTM with same number of units) every 15 training iterations. Double-Q
learning allows for optimal performance on the reward task in drastically fewer agent maze traversals
and network training iterations than with standard DQN (Mnih et al., 2013) based Q-learning which
suers from overestimation of Q-values. We settle on a discount factor (𝛾 ) of 0.8 as values higher
than this regularly cause the network to converge on solutions wherein the agent does not take the
most direct path to reward locations, with backtracking at secondary choice points. The second loss
component is the sensory prediction task which we used to pre-train the network (𝜆 = 0.5). After
the network has been pre-trained (optimising to minimise Eq. 1), the network achieves perfect per-
formance on the predictive task. This loss component is included when training the network on the
reward task so that the spatial map (non-metric attractor landscape) of the maze environment formed
during pre-training is maintained throughout Q-learning. This ensures the map is not overwritten
as would happen when Q-learning is performed alone, and leads to faster task learning (see results).
We optimise the network for this joint task using Adam and a learning rate of 0.0005, which we nd
improves the rate of convergence with optimal task performance, as opposed to higher learning rates
which still converge but with backtracking often inherent in task solutions.

In contrast to much of the previous work on spatial representations in recurrent networks, we do not
give the network any indication of the agent’s location ormovement. Thismakes the task considerably
more dicult due to the unpredictable movement possible at choice points during the reward task.
The network is coerced into storing the current movement direction of the agent in its representation,
in addition to storing the cue frequency. As such, a network of Gated Recurrent Units (Cho et al., 2014)
(GRUs) or vanilla RNN units was unable to perform well in either the pre-training or joint RL task
due to these prevalent long term dependencies (18 steps between cue and nal reward).

To analyse the representations formed by the network, we train a further single layered fully con-
nected network with a softmax layer (shown in green in Figure 2) to predict the agent’s next location
using the activity of the LSTM. There is no backpropagation of gradients between this predictor and
the LSTM network, and the predictor is trained at the end of reward training. The plots in Figures
5 and 6 are distributions indicating the probability of agent location inferred from LSTM activity by
the predictor. This is used in place of the decoding algorithm used by Johnson and Redish (2007) to
predict the neuronally inferred maze location of rats when performing a cue based task.

3 Results
The agent learns the sensory prediction task to a high degree of recall and after around a thousand
training iterations (combined loss with pre-training in Figure 3), the agent was able to achieve perfect
performance on the reward task when the LSTM network had 380 or more units (Fig. 3, right). We
trained the reinforcement learning (Eq. 2) portion of the task in an epsilon greedy manner, with a
steadily decaying epsilon to ensure that the agent would choose the rewarding path consistently once
actions were chosen at choice points completely by the network. Notably, the agent did not turn
at either of the secondary choice points once training had completed - only at the primary choice
point.

We attempted to run the reinforcement learning task alone in a maze with no sensory input except the
reward cue. In this scenario the network is not able to learn the task due to a lack of self-localisation
and is unable to perform the task based on step counting between the cue and choice point. In ad-
dition, the reward based reinforcement learning task was attempted using Q-learning alone with a
loss function that did not include the wall colour prediction error, both with and without pre-training
(shown in Fig. 3, left). In both cases we nd that the reward task is not learnable with the same higher
rate of epsilon decay we use for the combined loss function with pre-training, as the network quickly
forgets the attractor landscape of the maze formed during pre-training, which we maintain through
the combined loss (Eq. 2). We also nd the network can solve the reward task using the combined
loss without pre-training, albeit in around 3 times the number of maze traversals as with the use of
the spatial map formed in the pre-trained case (Fig. 3, left).
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Figure 3: Left: Success rate (proportion of direct traversals to reward locations) of each set of train-
ing paradigms on the reward task, averaged over 10 initial conditions and random wall colours using
optimal rate of epsilon decay for each paradigm, each shown with a 95% condence interval. Attrac-
tor landscape formed during pre-training alongside combined loss allows network to achieve perfect
performance on reward task in relatively few maze traversals. Q-learning alone without pre-training
also achieves perfect performance in more than twice the number of maze traversals. Q-learning
alone with pre-training takes far more maze traversals to converge (and is less likely to be optimal)
due to the non-random initial state of network and inability to utilise the spatial map formed. Com-
bined training without pre-training also takes relatively many maze traversals to converge due to a
relatively dicult joint task with no biased initial state. Right: Pre-trained network optimised with
combined loss converges at similar rates with dierent network sizes above 380 units.

3.1 Extraeld place cell ring
First, we investigate the representation learned by the the network during these two stages of training.
Pre-training causes the formation of discrete attractors that resemble place cells in the hippocampus.
Individual units in the network generally have well isolated place elds, which together cover the
whole maze and therefore allow reliable decoding of agent location. In addition to an increase in
activity in a particular unit when the agent moves across its respective place eld, we also observe
substantial extraeld ring of these units. This activity occurs mainly at the primary cue location
and at the rst choice point after pre-training. After training on the reward task, in addition to the
place elds, the network also has units with extraeld activity at the secondary choice points (Fig.
4E).

In the top row of Figure 3(A-D) we show activity in 4 reward trained LSTM units obtained through
the collection of unit activity from a full left sided trajectory from the maze start point returning to
the start point with cues presented, together with a full right sided trajectory. We show all activity
from this activity collection in the top row of Figure 3(A-D) and proceed to outline the maze areas
for each unit with activity higher than 30% of the peak activity of that particular unit (mirroring the
experimental threshold used by Johnson and Redish (2007)), denoting them as place elds correspond-
ing to these LSTM units. In experiments, rodents seem to pause at high consequence decision points
(Johnson and Redish, 2007) with alternating head movement behaviour signifying vicarious trial and
error (VTE) (Muenzinger, 1938; Hu and Amsel, 1995). In the activity plots in the bottom row of Figure
3(A-D), we simulate this using our reward trained model by running the agent from the start posi-
tion at the bottom of the maze stem, then pausing it at the top of the stem, with a left cue presented
halfway up. We show activity above 60% of unit peak activity (identied with the previously collected
aggregated activity) shown in addition to the previously identied place elds.

The network representation seems to sample both return arms, with surprisingly high extraeld ac-
tivity in the shown LSTM units when the agent is paused at the maze choice point, a location for
which these units do not usually have corresponding activity (Fig. 4A-D). We dene nonlocal ring
as unit activity above 60% of peak averaged unit activity when running the agent along the central
stem (bottom row Fig. 4A-D) to observe only the most poignant extraeld behaviour.
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Figure 4: A-D) Top row: Activity maps showing well isolated place elds of four LSTM units (acting
as place cells) indicated in dotted regions after the reward task. Place elds determined by contiguous
locality with average activity exceeding 30% peak unit activity during a single left trajectory followed
by a right trajectory. Bottom row: LSTM unit activity exceeding 60% of previously averaged peak unit
activity for the given neuron when agent run from bottom of maze stem to top of stem and given a low
frequency (left) cue tone halfway up the stem, then stationary at choice point with LSTM network
repeatedly receiving observation from choice point for timesteps thereafter (shown in addition to
previously determined unit place elds in dotted regions). A, B) Strong extraeld ring contiguously
from cue to choice point. C, D) High extraeld ring at choice point while agent is paused at top
of stem. E) Place elds (determined from average activity on both trajectories) of four LSTM units
outlined in dotted areas after reward based task. High levels of consistent extraeld ring at primary
and secondary cue points in 56% of LSTM units.

3.2 Forward moving representation
The internal dynamics of the LSTM network has an inherently forward looking representation of the
maze once pre-trained in a predictive manner. As depicted in Fig. 5, whilst the agent is stationary,
the dynamics of the LSTM network moves forward through the maze, incorporating the trajectory
modulation of the cue played halfway up the maze stem. The forwardmovement of the representation
is also notable for having an inconsistent velocity, where the LSTM inferred agent location jumps
(Hasselmo, 2009) from the top of the maze to lower down the arm (timestep 16 in Fig. 5).

Figure 5: LSTM inferred agent position after pre-training on maze. The agent is run from the start at
timestep 1 to timestep 4 where it receives a low frequency cue (indicating a left turn). At timestep 9
the agent is stopped at the top of the maze stem and the LSTM is given the environment observation
from this location for the remainder of the shown timesteps. The inferred position then moves left
according to the cue with the position seeming to jump abruptly between timesteps 15 and 16. The
inferred position then moves back to the starting position at timestep 26. We observe an analogous
inferred forward moving representation on the right side of the maze with a high frequency cue.
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Figure 6: LSTM representation after reward training. As previously, we run the agent from the start
position to the top of the stem of the maze at timestep 9 with a low frequency (left) cue tone at
timestep 4. Again, the agent is stopped at this position with the LSTM network receiving the environ-
ment observation from this position for the remainder of the shown timesteps. As with the network
purely trained on the predictive task, the representation moves in the direction corresponding to the
frequency of the given cue tone. Then between timesteps 14 and 15, the inferred position jumps
from the return arm with active reward sites to the alternate arm, with the inferred position moving
from this position to the start location fairly consistently. Then the inferred position jumps again at
timestep 32 to the rewarding return arm and moves constantly to the start position.

In stark contrast to the dynamics of the LSTMnetwork after predictive pre-training, following training
on the reward task the forward representation of the LSTM is still looking ahead of the agent but is
now displaying sweeping behaviour (Fig. 6) which is identied experimentally in rats by Johnson and
Redish (2007) when performing cue based tasks. When the agent is stationary at the choice point, we
observe the representation moving ahead of the agent - rst in the direction corresponding to the cue
given at the rst cue point and then abruptly down the opposing arm of the maze towards the starting
location, thereafter the representation moves down the correct arm (corresponding to the cue) and
becomes stationary at the maze start location. This path switching behaviour is reliably observed in
networks trained on the combined loss (Eq. 2) with and without pre-training, with diering numbers
of units and initial conditions as long as the reward task is solved without backtracking at secondary
cue locations. The network lacks a sweeping or forward moving representation when trained on the
reward task with Q-learning alone, regardless of pre-training. Thus pre-training does not contribute
to sweeping or path switching behaviour.

Figure 7: UMAP manifold of LSTM network dynamics of complete left trajectory (dark blue) and
complete right trajectory (red) shown along with manifold of dynamics when agent run from start
location to choice point with left cue (light blue) and right cue (pink) given at cue point and agent
paused in place at the top of the maze stem. A few timesteps after the agent is paused, the dynamics
of the left cue paused agent (light blue) switches manifold path abruptly from running alongside the
complete left trajectory path (blue) and joins the right trajectory path (red), following this for many
timesteps before ultimately resulting at the same manifold end position as the complete left trajectory
manifold path (blue). This is analogous for the right cue paths (red and pink).
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We further investigate the network representation using Uniform Manifold Approximation and Pro-
jection (UMAP) (McInnes et al., 2018). Figure 7 shows generally connected manifolds, with closer
inspection revealing the dynamics which leads to the sweeping arm behaviour in Figure 6 when the
agent is stationary at the primary choice point. Zeroing visual input while the agent is paused at the
choice point gives comparable representation dynamics to that observed in Figures 6 and 7.

Separately, we nd that place elds of particular LSTM units drift forwards from their original r-
ing positions after pre-training, towards the reward locations on the return arms throughout reward
training, as shown experimentally in CA1 neurons in Lee et al. (2006). We observe this behaviour in
50 out of 380 network units (13%), with nal resting locations of place elds at reward locations (seen
in Appendix Figure 10). This is possibly explained by the gradient of Q values (prediction of pre-
dicted reward) spreading backwards from reward locations (Hasselmo, 2005) and becoming stronger
throughout training.

3.3 Selectivity of neuronal units
In addition to a forward sweeping representation, this trained network also exhibits neural selectivity
that closelymatches hippocampal circuits. Grin et al. (2007) reported that after reward learning, hip-
pocampal neurons were more strongly selective for the encoding or choice phase of a task rather than
the direction of the organism’s trajectory. We garner the preference of selectivity of each neuronal
unit in our network using a discrimination index used by Grin et al. (2007) for the turn direction
selectivity (𝐷𝐼turn) and the phase selectivity (𝐷𝐼phase):

𝐷𝐼turn =
𝐹𝑅right − 𝐹𝑅left

𝐹𝑅right + 𝐹𝑅left
𝐷𝐼phase =

𝐹𝑅cue − 𝐹𝑅choice

𝐹𝑅cue + 𝐹𝑅choice
(4)

where 𝐹𝑅right for a particular LSTM unit is the mean ring rate from the cue point on the central stem
to the choice point at the top of the stem on trajectories where the agent turns right at the choice
point. Similarly 𝐹𝑅left is the mean stem ring rate when the agent turns left. 𝐹𝑅cue is the ring rate
at the cue (encoding) point averaged over both left and right trajectories and similarly 𝐹𝑅choice is the
averaged ring rate at the choice (sampling) point.

Figure 8: Histograms showing LSTM unit discrimination index for turn direction selectivity (𝐷𝐼turn)
vs task phase selectivity (𝐷𝐼phase). A highly negative selectivity index for turn direction indicates a
neuronal unit which exhibits high levels of selectivity (uniquely high network activity) for a leftward
trajectory and a highly positive selectivity index indicates selectivity for a rightward trajectory. A
negative selectivity for task phase indicates a neuronwhich is highly selective for the choice (retrieval)
phase of the goal based task whereas a positive index indicates a neuron which is highly selective for
the cue (encoding) phase of the task.

The ring areas used for selectivity measurement are insets in Figure 8. We use the stem above
the cue point to assess turn direction selectivity, and the cue/choice points to assess encoding and
sampling (𝐷𝐼phase). Figure 8 shows a higher proportion of LSTM units are strongly task selective
rather than turn selective, with signicantly more units having large absolute 𝐷𝐼phase indices than
𝐷𝐼turn indices.

In addition, the reward trained network is found to have a disproportionately high number of units
(163 out of 380 LSTM units) with place elds at the start location of the maze. Moreover, we nd
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evidence of conditional destination encoding in these units which were heavily dierentiated in their
ring with respect to particular rewarding locations, as shown experimentally in CA1 hippocampal
place cells (Ainge et al., 2007; Wood et al., 2000; Ferbinteanu and Shapiro, 2003). 59.5% of units with a
place eld at the maze start location red uniquely at this point for rewarding locations on a particular
return arm.

4 Discussion
In this work we show that networks trained with a combined predictive and goal-based objective
exhibit functional dynamics and selectivity behaviour coinciding with that of hippocampal neurons.
We demonstrate that extraeld ring activity of network units emerge when a simulated agent, which
is trained on a goal based reward task in a T-shaped maze, pauses at decision points - suggesting
intrinsic dynamics are encoding the future trajectory of the agent. This mirrors experimental results
in hippocampal place cells in rats (Johnson and Redish, 2007; Frank et al., 2000). At the same time, we
nd that networks using this combined objective, following pre-training only on a sensory prediction
task, can learn the correct goal-directed behaviour much faster than an equivalent network with only
a Q learning objective.

Previous work shows that metric neural representations of environments form when an RNN is op-
timised to predict agent position from agent velocity (Cueva and Wei, 2018; Banino et al., 2018) and
non-metric representations form when an RNN is trained to predict future sensory events given di-
rection of movement (Recanatesi et al., 2019). When training our model we do not provide the LSTM
network with any explicit information about location or direction, it only receives sensory informa-
tion. This is similar to the purely contextual input received by the model pre-trained by Xu and Barak
(2020) where no velocity input is given, however, the network used by these authors is still trained
on position and landmark prediction in a supervised way.

Instead, our training paradigm forces the LSTM to maintain an implicit notion of movement within its
internal state in relation to environmental observations. This, in conjunction with the consideration
that model-free RL methods such as Q-learning perform poorly on tasks in dynamic environments
such as ours (Dolan andDayan, 2013), and the long term dependency on the delayed cue in perspective
of the choice location, makes the task outlined in Figure 2 particularly challenging.

Training on a sensory predictive task causes the formation of a non-metric place cell like representa-
tion in the activations of network units, similarly to Recanatesi et al. (2019). These units demonstrate
nonlocal extraeld ring (Appendix Figure 9) and after reward training (Figure 4). Johnson and Redish
(2007) nd that this extraeld ring is particularly striking at consequential decision points where rats
usually pause in order to sample previously seen trajectories. We observe that cue or choice point ex-
traeld activity is evident in most LSTM units after training on the reward task. This is likely due
to the increased precedence these points have in the agent reaching reward locations. Together the
trained LSTM network units form a representation which sweeps along the paths available to the
agent, rst down the reward path and then the other, as shown in Figure 6 and demonstrated in rats
in Johnson and Redish (2007).

Although hippocampal place cells are critical for spatial memory (Nakazawa et al., 2002; Florian and
Roullet, 2004; Sandi et al., 2003; Redish and Touretzky, 1998; Miller et al., 2020), it is currently unclear
by what mechanism an ensemble of place cells contributes to a representation of goal-directed be-
haviour (Morris, 1990). Our model and training paradigm is in keeping with the hypothesis that the
hippocampus is involved in maintaining a conjunctive representation of cognitive maps and sensory
information (Whittington et al., 2019). We show that this paradigm can be extended with predictive
learning of Q-values of anticipated future reward, and show that the resulting representation is well
suited for learning actions leading from a cue to a reward. Importantly, this representation emerges
solely from sampling sensory inputs and predicted rewards, while reinforcement learning itself re-
mains model-free and is initially random. The surprising similarity of the task-dependent activity in
our simulations and experimentally recorded neural activity in similar tasks suggests that the model
may replicate central aspects of learning and planning in the hippocampus. Our trained model could
improve understanding of hippocampal function by testing hypotheses regarding previously unob-
served dynamics inexpensively. This could be performed on maze environments such as this work,
or more open arena settings once the model is retrained.
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A Appendix

A.1 Extraeld place cell ring after sensory prediction task
After pre-training on the sensory prediction task outlined in Figure 1, we observe that when the agent
is paused at the top of the stem of the maze the network representation moves far ahead of the agent,
caused by extraeld activity of many neurons in the network.
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Figure 9: A, B, C) Top row: well isolated place elds of three LSTM units indicated in dotted regions
after pre-training. Place elds determined by contiguous locality with average activity exceeding 30%
peak eld activity during a single left trajectory followed by a right trajectory. Bottom row: agent
run from bottom of maze stem to top of stem (and given a low frequency cue tone halfway up the
stem) and paused at choice point with LSTM network repeatedly receiving observations from choice
point for timesteps thereafter. A) Strong extraeld ring at choice point with some activity at the
cue point. B) Extraeld activity at choice point and at position below. C) High extraeld ring at cue
point before agent pauses at top of stem.

Figure 10: Place elds of four LSTM units, starting from i = 0 where the network has been pre-
trained on the sensory prediction task, drifting forwards towards reward locations throughout reward
training (where i is the number of training iterations). The place elds ultimately rest at maze reward
locations at the end of reward training (i = 1400).
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