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Abstract

This project aims to test the difference in effectiveness in various neural network archi-

tectures when utilised in the learning of large and complex quantum states. Namely the

project explores the use of variational autoencoders of contrasting depths and various re-

stricted Boltzmann machines.

Quantum systems are notoriously difficult to store and manipulate due to the fact

that the number of parameters required to describe them increases exponentially with the

number of qubits. Expressing quantum states with classical methods becomes intractable

when the number of qubits is large.

The contribution of this project would be to show concretely that learning approxi-

mate representations of large quantum states using neural networks (especially variational

autoencoders) can be effective and accurate.
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Chapter 1

Quantum Systems

Here we outline what we mean by a quantum state and why physicists and computer

scientists alike may need to manipulate them in the present and in the near future. We

also emphasise the rationale behind the difficulty in storing them.

1.1 Background

Quantum states contain all the information about a given quantum system. A Quantum

state distribution is essentially a probability distribution, gained from the quantum state,

representing likelihoods for all possible outcomes when the system is measured. We pro-

duce the state distribution by taking the amplitude squared of the state and normalizing.

This state distribution will be the subject of our learning task. These distributions are

represented as measurements of the state on a particular basis. When we measure a spe-

cific parameter of the state, this gives us the probability that parameter. This can be

more accurately called a measurement distribution on a specific basis, and we can generate

distinct measurement distributions from the same quantum state by measuring the prob-

ability of the parameters on a different basis (as we do in chapter 5). In order to measure

on another basis, we just need to apply a linear transform to the state. The issue is that

the number of parameters required to represent these states (and thus the distribution)

can be considerably large. Quantum state tomography (QST) is the method by which we

aim to reconstruct the full state from our compressed representation.

1.1.1 Why this is important to us

Quantum probability distributions require an exponential number of parameters to learn

as a function of the number of qubits in the system, although various methods do exist

for storing certain classes of quantum distribution which reduce this overhead somewhat.

It is for this reason that we aim to compress the state distributions using neural network.
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We use the fact that entanglement causes the distributions of some quantum systems to

have a more learnable pattern than others. While entanglement is not by itself a sufficient

condition to make a quantum state difficult to represent (even approximately), hard to

represent states are usually hard due to being entangled. We task a neural network such

as a Variational Autoencoder (VAE) with learning the parameters required to reconstruct

such distributions once trained.

This would be intractable using conventional algorithms in computer science and physics.

An example of such an algorithm is Matrix-Product-States (MPS) [9] which is the current

state of the art for states which are characterized by being lowly-entangled.

1.2 State Distributions

Figure 1.1: An example of a Product State Distribution. The x-axis here (and henceforth)
represents the measurement of the corresponding parameter of the system (here we have
restricted the plot to showing just the measurements of the first 250 parameters) and the
y-axis gives their respective probability. Product states are relatively easy for a neural
network to learn as product states are maximally factorisable and so we only need twice
the number of qubits of complex numbers to represent them.

In this project, we aim to test the learnability of 3 quantum probability distributions.

Using QuTiP [4] which is a Quantum toolbox written in the Python programming language,

we generate a simulated quantum distribution using the command qutip.rand ket(). To

produce a simulated product state, we recursively produce a random ket vector for each

qubit in the system and apply the tensor product between the current state and the next

ket vector, and this tensor product then becomes the state for the next recursive call.
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Figure 1.2: An example of a Hard State Distribution. Hard states are relatively difficult
to learn due to the fact that they are highly entangled. Therefore as previously stated,
we have less structure that a model can use as a basis for learning the distribution of the
state when given samples from this distribution. However, Hard states are not as highly
entangled as Random States, and so they do have some structure that can be learned by
our model(s).

Figure 1.3: An example of a Random State Distribution. Random states are difficult to
learn due to the fact that they are highly entangled and normally can’t be factorised. To
write down the wave-function we need 2N complex numbers (amplitudes) where N is the
number of qubits.
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We then use this distribution to sample from repeatedly in order to feed these indepen-

dent and identically distributed examples into our models.

In this project we attempt to reconstruct 3 different types of quantum states using

generative models. Learning a state distribution with high fidelity using one of the models

we outline in section 2 requires some repeated or inherent pattern to be embodied within

the distribution to be learned.

In Quantum terms, we can generally say that the more entangled a state is, the less

structure there is contained within the distribution, and so this is harder for a model to

learn with fewer parameters than originally required to express the state. However there

exist quantum states such as the W state which has a high degree of structure despite

being highly entangled.

However, quantum states that can be factorised can be represented by fewer parameters

and so when we train a model to learn a state that can be factorised, we expect these models

to be able to reconstruct these states with high accuracy as opposed to states that cannot

be factorised while keeping the number of parameters (compression rate) in the model

constant.

In order of learnability from the easiest to learn to the hardest, we have: Product states,

Hard states and Random states.

Although a high level of entanglement in a quantum state distribution generally reduces

their learnability, some highly entangled states can be represented efficiently using neural

networks. This is demonstrated in this project and in [12] in the hard state; it represents

a state with high entanglement but some structure that can be learned.

1.2.1 Forming Samples

In order to use the distribution as an input to our models, we take many batches of samples

from the distribution and use the sample batches as our input.

This is achieved by first forming a list of all of the binary permutations of the given

number of qubits in the system for the current experiment. For example, if we have 8 qubits,

then there are 28 different binary permutations, i.e (00000001,00000010,...,00000011,...,11111111).

This is coincidentally the same number (28 = 256) of parameters required to express an

8 qubit quantum system. We then sample from this permutation list according to the

distribution (itself a list of (28 = 256) probabilities all summing to 1 formed using the

QuTiP library), thus creating a large batch of samples. These batches, which are sampled

at every iteration in the described way, is how we train our models.

Then to sample from the Variational Autoencoder (described in the next chapter) we

form batches of samples from the standard normal distribution which we feed into its

decoder.
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1.3 Quantum Gates and Change of Basis

Changes to a quantum state are brought about by the actions of quantum gates. Instead

of the use of wires and logic gates as in classical computer systems, a quantum system

utilizes a quantum circuit and quantum gates in order to perform computations on quantum

information.

Quantum gates on one qubit can be specified by a 2x2 matrix. Primarily in this project

we use the recursive tensor product of the Hadamard gate:

H ≡ 1√
2

[
1 1

1 −1

]
in order to construct a second basis of a given quantum state. This is also known as

the Hadamard transform.

The recursive definition for the Hadamard transform we have as:

Hm ≡
1√
2

[
Hm−1 Hm−1

Hm−1 −Hm−1

]

which is defined for multiple qubit systems as:

Hm = H1 ⊗Hm−1

We then apply this large matrix to the original product state distribution. This gives

us a different basis that we can measure the state distribution on in order to form a

different measurement distribution form the one we had previously. Learning both of the

measurement distributions generated from measuring on both bases of the state distribution

(measurement basis prior to the transform and the measurement basis we form after the

transform) is the objective in chapter 5.
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(a) Measurement distribution on X-basis. (b) Measurement distribution on Z-basis.

Figure 1.4: Measurement distributions of (a) X and (b) Z bases of a product state. An
example of the measurements from a basis change resulting from a Hadamard transform
applied to a Product State Distribution.

10



Chapter 2

Neural Networks

In this chapter we discuss the two neural networks used in this project. The Variational

Autoencoder (VAE) and the Restricted Boltzmann Machine (RBM) both lend themselves

in different ways to the task at hand. Both architectures are examples of generative models

and aid us in learning quantum probability distributions by learning trainable parameters.

Ultimately our goal is to reconstruct these distributions from the learned parameters of the

models thus giving us the original quantum probability distribution with varying fidelity.

Notably, the two models mentioned are generative models as opposed to most neural

network architectures which tend to be discriminative models. This difference will be

explored in depth in this chapter.

2.1 Background

An artificial neural network (ANN) can be essentially seen as a non-linear function ap-

proximator. They largely consist of layers of ‘neurons’ that are fully connected between

layers but have no connections within the same layer with a non-linear activation function

applied to the output of each hidden (inner) node.

Most ANN models described in literature ([7],[11]) take an input and transform the

input through many layers to classify the usually much higher dimensional input into

a much lower dimensional output . These are known as discriminative models as they

essentially approximate P (output—input) once they have been trained. Generative models

such as the VAE and the RBM on the other hand learn a model of the input data and can

therefore generate previously unseen inputs which follow the same pattern as the ones it

has trained on. The neural networks we use here have significantly fewer parameters than

the amount of data that they are trained on, so the networks are encouraged to detect

and efficiently incorporate the underlying pattern of the data in order to generate new

examples. In our case, we aim to reconstruct the same quantum state distribution that we
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Figure 2.1: An example of a basic Multilayer Perceptron which forms the foundation of
the other neural networks we outline. The two yellow nodes in the first layer serve as the
inputs to the network, the green nodes serve as the ’hidden’ layer and the red node is the
output. The green nodes each have a matrix Wi of weights between both of the input
neurons and itself and add a bias to the matrix multiplication Wi ∗ x where x is a vector
(or matrix if x is more than 1 dimensional) of the inputs. In this case for each green node
i we have hi = Wix + bi as the computation performed. Each Wi and each bi are trained
via backpropagation in order to minimize the difference between the ground truth label yj
for each input xj and the output at the red neuron of the neural network which we denote
y′j .

inputted.

2.2 Autoencoders

The function of a standard autoencoder is to encode the input data using an encoder (a

neural network in this case) producing a latent variable which is a vector of real values.

This latent variable is then passed into the decoder (also a neural network) as an input and

the output of the decoder is compared to the original data that was input to the encoder.

The difference between them is used as a loss function which the whole network aims to

minimize via gradient descent.

Multiple pieces of data (say images) can be used to train the autoencoder. By saving

the latent vectors produced by the encoder, we can later reconstruct a particular image by

inputting the latent vector into just the decoder portion.

Therefore we can say that the autoencoder is a form of compression as the total size
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of the parameters in the autoencoder as a whole is far lower than the total size of all the

pieces of data (images) that it has learnt.

Figure 2.2: The graphical representation of an Autoencoder has an hourglass shape with
a larger input layer dimension (in yellow) and output layer dimension (in red) along with
a larger encoder and decoder layer dimension (in blue) than the latent space dimension
(in green). This bottleneck aims to provide as compressed a representation as possible of
the input data in the latent space layer. The decoder then aims to reconstruct the original
data using just this compressed representation from the latent space.

2.3 Variational Autoencoders

With the Autoencoder just described, latent variables are encoded by the encoder layer, but

there is no alternative to creating meaningful latent variables other than letting the encoder

layer decide them with said architecture, and no way of generating different samples of the

same data distribution as a generative model should be able to do.

The Variational Autoencoder (VAE) was introduced in 2013 by Welling and Kingma

[5]. The VAE’s architecture differs from the Autoencoder in one particular way. Instead

of the latent variables being formed arbitrarily as with the Autoencoder, the VAE’s en-

coder coerces the latent variables to follow a unit Gaussian distribution (standard normal

distribution), that is N (µ = 0, σ2 = 1).

Now we can observe that the VAE is a true generative model; in order to generate new

data following the same distribution the VAE was trained with, we just need to sample

from the unit Gaussian distribution X ∼ N (µ = 0, σ2 = 1) and pass this sample X into

13



the decoder of the trained VAE.

The loss function we optimized for previously with the autoencoder was just the recon-

struction divergence from the original input. With the VAE our loss function to optimize

is a combination of the aforementioned reconstruction divergence and the divergence be-

tween the the latent variables produced by the encoder of the VAE compared to the unit

Gaussian distribution.

The divergence between the two distributions is measured using the Kullback-Leibler

divergence, which is an indicator of the relative entropy between two distributions.

Thus our loss is now composed of:

Reconstruction Loss =

∑|Data|
i (V AE(Datai)−Datai)2

|Data|

Latent Loss = Kullback-Leibler divergence(latent variables||N (µ = 0, σ2 = 1))

where Kullback-Leibler divergence(P ||Q) =

∫ −∞
∞

log(
dP

dQ
)dP

And so, our combined loss = Reconstruction Loss + Latent Loss

The VAE network would then aim to optimize this combined loss. However, calculating

the Kullback-Leibler divergence analytically at every iteration would be computationally

expensive, and so we reparameterize this measure. The resulting modification is that

instead of the latent variables being of the form V ∈ Rd where d is the latent dimension,

we instruct the encoder to generate a vector of means and a vector of standard deviations.

Then in order to calculate the Kullback-Leibler divergence we now have:

Latent Loss = −1

2

∑
i

(1 + log(σ2i )− µ2i − elog(σ
2
i ))

for each piece of data i, where µi and σi are the mean and standard deviation respec-

tively.

Then when we want to test for how well the VAE has learnt a given set of data,

we sample from the Gaussian distribution using the mean and standard deviation pairs.

Particularly for each µi, σi ∈ latent space = ((µ1, σ1), ..., (µn, σn)) we sample fromN (µi, σi)

to obtain a latent variable for each i which we use as an input for the decoder network.

We then compare the difference between the output of the decoder and the original input

that we passed to the encoder.

This process of sampling from the normal distribution to form the latent variable also
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occurs when training the VAE. Consequently a particular input that caused the encoder

to generate a certain mean and standard deviation, would therefore have a distinct latent

variable value after the encoder portion and would now only have a high probability with

some standard deviation of being the same latent variable value when input to the decoder.

This forces the VAE to be very efficient in the way it encodes and decodes inputs as it

introduces inherent (Gaussian) noise to the architecture. This therefore means the model

can generalize a great deal, and can generate examples from the same distribution as the

input data with good fidelity.

In this project, we will test how well VAE’s with differing numbers of layers can learn

a given Quantum state distribution. Although the number of layers will differ, the number

of parameters will remain the same in order to ensure that the depth of the network is the

independent variable.

Figure 2.3: The graphical representation of the VAE is very similar to that of the Autoen-
coder. The major difference is that instead of trying to solely compress the input samples
as the Autoencoder does, the VAE instead essentially aims to learn an approximation to
the underlying probability distribution of the inputs. In this sense, they are a generative
model similar in a sense to Restricted Boltzmann Machines which we will introduce in the
next section.

2.4 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are relatively shallow in comparison to the au-

toencoder models already described. Typically they have 2 layers with the first being the
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visible layer and the second being the hidden layer. Also as previously, the two layers are

fully connected with the restriction that there are no connections between any two nodes

(neurons) in the same layer. This constraint is what gives the model the first part of its

name.

The visible layer here acts as both the input and the output layer. As before we have a

weight Wij between each visible (input) node i and each hidden node j and a bias at each

hidden node.

So for a given input x ∈ Rd,where d is the dimension of the input (layer), we have

as before (W ∗ x + bhidden) followed by an activation function (eg. sigmoid) being the

computation performed at the hidden layer where W ∈ Rd×hidden layer dim is a matrix with

the same number of rows as the dimension of the input (d) and the same number of columns

as nodes in the hidden layer and bhidden is a vector with the same dimension as the number

of nodes in the hidden layer.

However unlike previously, this would not form the output. As well as the bias at the

hidden layer (bhidden), we also have a bias applied at the visible layer (bvisible). The RBM

now attempts to reconstruct the input from the output of the previous computation:

hidden output = sigmoid(W ∗ x+ bhidden)

. The previous output is now the input and it is multiplied by the weight matrix W and

summed to the bias at each visible layer node.

The computation now performed at the visible layer is:

visible output = W ∗ hidden output + bvisible

This is a (first) approximation of the original input to the RBM. The reconstruction

error between this approximation and the original input is then used to update the weight

matrix W and the bvisible vector.

The bhidden vector is updated by the difference between

hidden output = sigmoid(W ∗ x+ bhidden)

and

hidden output = sigmoid(W ∗ visible output + bhidden)

. This process is then repeated continuously from the feed-forward computation until

convergence (very low reconstruction error). This training method is known as Contrastive

Divergence.

The RBM learns to reconstruct the original distribution from which the input is sampled

in an unsupervised way by performing repeated forwards and backwards passes between
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the visible layer and the hidden layer. The technique is unsupervised as the model is not

shown a set of inputs and their corresponding labels (as with supervised learning); it is

just shown a set of inputs and tasked with identifying the patterns that are present, which

would then enable the model to internally replicate the distribution the inputs came from.

The ultimate goal would be to train a model that has the ability to generate examples

from a distribution (almost) equivalent to the distribution of the original inputs. This

makes the RBM a generative model.

Similarly to the VAE, the RBM is stochastic as we sample from the Bernoulli distri-

bution after applying the sigmoid function at both the visible and hidden layer before we

do another pass; thereby transforming our real value output into a binary one with some

randomness. The Bernoulli is parameterised by the output of the sigmoid function in each

case. This means that the model is inherently probabilistic in nature.

Figure 2.4: The graphical representation of the Restricted Boltzmann Machine is distinctly
different to that of the Autoencoder. Here we have only 2 layers, no latent space and no
encoder or decoder. Instead, we have a visible layer (in orange) and a hidden layer (in
green) which are fully connected between the layers with no connections within the same
layer. The visible layer acts as both the input and output layer. We make repeated forwards
and backwards passes updating the weights between the two layers at each iteration until
convergence as we attempt to reconstruct the input data accurately.

2.4.1 Deep Restricted Boltzmann Machines

Deep Restricted Boltzmann Machines are similar to standard RBMs in that they are also

trained using contrastive divergence. The computations outlined in the previous section
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also apply here, the forward pass computations just have an extra layer, as do the backwards

passes. The extra layer of weights and biases allow the network to be more expressive and

potentially learn more about the distribution it is training on. Depth in a neural network

has shown to be an important factor in a network’s ability to learn. Papers such as [7]

used (convolutional) neural networks with vast numbers of layers to achieve their results.

In this project we wish to observe whether depth in an RBM can be utilised to better learn

our state distributions with fidelity superseding that of the standard RBM.

Figure 2.5: The graphical representation of a Deep Restricted Boltzmann Machine is similar
to that of the standard RBM, but also features an extra hidden layer (hidden layers in
green). The visible layer (in orange) is still both the input and output layer.

2.4.2 Complex valued Restricted Boltzmann Machines

As outlined here [8] and in [12], a complex valued RBM is specifically designed to have

complex values as an input. In this project, we take the absolute value of the complex

numbers in a quantum state distribution. This model gives us the opportunity to attempt to

learn the raw distribution made up of complex numbers. As before, there are no connections

in the same layer and training is still performed by contrastive divergence.

As shown in figure 2.6, the complex RBM has a complex valued visible layer, and

therefore has a visible layer for the real part and a visible layer for the imaginary part of a

complex number each with its own bias vector. There are connections between these layers

to aid with learning. Between each of these layers and the (single) hidden layer we have a

set of weights for each component and a single bias vector for the hidden layer.
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This model will be tested along with the standard and deep RBMs to see if the complex

nature of the input can be utilised to gain good results using the architecture class.

Figure 2.6: The graphical representation of the complex valued Restricted Boltzmann
Machine. Here the visible layer (in orange) once again represents both the input and the
output layer. The input here is complex valued, and so we pass the imaginary component
to the hidden layer in blue, and the real component to the hidden layer in green. In this
way, we have a separate set of weights for each component of the complex input. Sometimes
the two hidden layers have connections between each other to help with learning.

2.5 TensorFlow

To utilize the above architectures, we need a robust way of running experiments on them

computationally efficiently. This is especially important given their complex nature.

TensorFlow [1] is a deep learning framework which is primarily formed of a library for

defining computational graphs and a runtime environment for executing those graphs once

they have been specified on a variety of different hardware; namely CPU and GPU are the

two main chipset architectures it is optimized to run on.

In this project we use the GPU implementation of TensorFlow as the computational

resources required to run the experiments in this project (which each represent a huge

number of large matrix multiplications and the storing of many thousands of floating point

values throughout) can only be met by using a high memory and highly parallel set up

afforded by an advanced GPU architecture. For this project an Nvidia GEFORCE GTX

1080Ti with 11 gigabytes of memory was used throughout.
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Computational graphs are an abstract method of characterizing computations as a

directed graph. Here the edges in the graph (as seen in Figures 2.1, 2.2, 2.3 and 2.4) are

equivalent to multidimensional arrays which we denote as Tensors. The nodes in the graph

construct these tensors and perform computations on them according to the procedure we

prescribe. These are denoted as Ops.

In this project, our experiments run with TensorFlow are composed of firstly defining

the computational graph we will be running on (e.g specifying the structure of the VAE).

Then in a separate section we have the execution of the defined graph within a tf.Session.

TensorFlow also has a set of built in high level optimizers which automatically com-

pute the gradients during backpropagation and apply the resulting updates which saves

us having to do this manually. In this project we use the AdamOptimizer [6] which has

been found in general to achieve good results with limited training when compared to the

initially widespread GradientDescentOptimizer.

2.6 Summary

In this section we have outlined the neural networks which we will focus on for this project.

The ultimate goal is to compress distributions of varying complexity into a fraction of the

number of parameters required to represent them classically.

We test the above networks with differing numbers of layers and hyper-parameters to

ascertain which architecture is best suited to this task. Thus we aim to establish which is

the best for future work and in achieving the more ambitious goals in this project.

20



Chapter 3

Objectives and previous work

The work in this project builds upon the work in this paper [10] by Rochetto, Grant et al.

In their paper they introduce the use of Variational Autoencoders in tackling the issue at

hand: compressing (hard) quantum states efficiently and accurately. In this project, their

work is built upon by comparing the use of VAEs of various depths against the use of other

neural networks. The Restricted Boltzmann machine is largely seen as the basic unit in

the field of deep learning, and is similar to the VAE in that its primary function is to learn

a probability distribution and reproduce said distribution when sampled from.

3.1 Takeaway from Rochetto et al.

In [10], the authors show concretely that deep neural networks can be used to approximately

represent hard quantum states. They go on to state that ”neural networks are able to

capture correlations in states that are hard to sample from for classical computers but not

for quantum ones”.

The major take away is that neural networks such as VAEs use far fewer parameters

to approximately represent states that that are known to have an efficient representation.

The compression rate that they achieve for hard states while maintaining 92.2% accuracy

is a factor of 5. For easy states such as the product state distribution, the accuracy is very

close to 100% while maintaining high compression.

3.2 Other Work

Quantum state tomography (QST) is discussed by Torlai et al. in their paper [12]. Their

conclusion coincides with the previous paper in that neural networks can be efficiently

used in Quantum state tomography, particularly when the states are highly entangled.

They state that the current state of the art method (Matrix-Product-State) is effective for

21



tomography of low-entangled states, but that neural networks in particular when trained

sufficiently can be a robust way of performing QST with highly-entangled quantum states.

The authors here use a complex valued Restricted Boltzmann machine in order to recon-

struct the state.

As stated, the current state of the art method for efficient quantum state tomography

involves approximating quantum states using a matrix product state [9] in order to deduce

the state of a quantum system efficiently instead of having to conventionally deduce the

state purely from measured data, which becomes intractable with larger systems. We

can see this approximation applied here [2] with computations only reaching a polynomial

number of operations (as opposed to an exponential number of operations without the

approximation).

3.3 Aims of the project

The aims of this project will be based on the work outlined in the first two papers above.

The motivation is to compare the neural networks used in the two papers and compare

them for fidelity and expressiveness.

Principal aims:

• Learn product, hard and random state distributions using Variational Autoencoders

with varying numbers of layers.

This enables us to infer how much of an effect the depth of the VAE encoder and

decoder has on the fidelity of the network at set rates of compression.

• Learn product, hard and random state distributions using a Restricted Boltzmann

Machine.

We compare the RBM to the VAE results in order to confirm which generative

architecture is best suited to the task of quantum state tomography.

• Adapt the Variational Autoencoder to learn a full state on a complete set of bases.

Here we essentially attempt to coerce the VAE to learn more than one basis of the

quantum state distribution simultaneously. This is essentially tasks the VAE with

learning at least two probability distributions and reconstructing both from the same

set of parameters (weights, biases and latent variables).

Advanced aims:
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• Implement a deep RBM to learn product, hard and random state distributions

Intuitively a deep RBM may be able to overcome the expressivity limitations of the

standard (shallow) RBM due to having more layers. Thus by having a better suited

architecture we may be able to learn and reconstruct the distributions with higher

fidelity than previously.

• Implement a complex valued RBM to learn product, hard and random state distri-

butions.

The aim here is to implement the complex valued RBM model used in [12] and test

against the VAE and standard RBM model.

• Reconstruct the full state from the learned VAE representation.

If the VAE is successful in learning more than one basis of a state, we could theoreti-

cally reconstruct both bases and thus have the raw ingredients required to reconstruct

the full state.

• Test and compare the fidelity of the distribution learned by the VAE encoder.

The VAE is tasked with encoding the distribution of data in both the encoder and the

decoder. Currently we use the decoder to reconstruct the distribution. Instead we

attempt to use the encoder as it does not rely on sampling and thus we can directly

compare the fidelity of the distribution learned by the VAE encoder.
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Chapter 4

RBMs vs VAEs

In this chapter we describe the first set of experiments run in this project. We aim to

solidify the claim that Variational autoencoders (VAEs) are the foremost approximator in

learning large quantum states via Quantum state tomography.

We hypothesize that the Restricted Boltzmann machine will give a higher reconstruction

error for the same number of parameters in a given model than the Variational autoencoder

(especially deeper models with 4 and 5 layers).

If this is the case, then for the VAE models we expect this will give a higher overlap

between the true distribution and the reconstructed one when learning the three quantum

probability state distributions we outlined in chapter 1. The product, random and hard

states will each be representing a 12 qubit system for this set of experiments. As previously

stated, the number of parameters required to express a quantum state increases exponen-

tially as a function of the number of qubits in the system. Therefore we would need 4096

(122) parameters in order to represent each of these state distributions.

The main task outlined in this chapter is to compress the state distributions using the

generative models outlined in chapter 2 with a compression of 50% and 25%. Thus the

models are limited to only 2048 and 1024 parameters in their respective networks in order

to learn the state distributions. This translates to the number of nodes in each model

being proportional to the number of parameters, thus dictating the number of nodes in

each layer. We then compare the various networks and observe their associated fidelity

when attempting to reconstruct the states.

4.1 System Set up

With regards to the VAE, our loss function is essentially:

Reconstruction Error + Kullback-Leibler divergence
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as stated in 2.3. However, starting with this loss function in its entirety causes the VAE

to prioritize generalisation ability over reconstruction fidelity as the two loss components

are treated equally. Therefore, we start by weighting the Kullback-Leibler divergence (the

divergence between the reconstructed distribution and the original state distribution) in

the loss function as 0 and gradually increase this weighting at every iteration to a maximum

weighting (which will be treated as a hyperparameter).

So the loss function we optimise is:

Reconstruction Error + (Current KLD Weight ∗Kullback-Leibler divergence)

where

Current KLD Weight =
Maximum KL Divergence

total iterations
∗ current iteration

Parameter Value

Total Iterations 1,000,000

Training Batch Size 1,000

Training Learning rate 0.001

Maximum KL Divergence Weighting in loss function 0.85

Sampling frequency Every 10,000 iterations

Total samples at each sampling interval 245,760

Sampling Batch Size 1,000

Table 4.1: VAE Training configurations for experiments on 12 qubit product, random
and hard state distributions. The batch size specifies how many samples from the state
distribution we feed into the model at every iteration. The learning rate specifies the
magnitude of the updates made to the weights of the network at every iteration by the
optimizer; here we use the Adam optimizer [6]. Sampling frequency refers to how often
we switch from training the model to sampling from it to calculate the overlap between
the sampled distribution and the original state distribution. The number of samples at
each batch size is large as we want to calculate an accurate measure of overlap; the more
samples we have from the model, the better we can form the reconstruction distribution.

We also require a metric that indicates if the model is indeed learning the state distri-

bution at all or has conversely not been able to learn anything useful. We actually expect

that the latter is the case when attempting to learn using samples from the random state.

In this capacity we check that the overlap (fidelity) between the reconstruction and the

state for a given model is above the magnitude of the overlap between the uniform distri-

bution Uniform(0, 212) and the state distribution. This can be visualized in figure 4.1.
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We maintain that in order for a given model to have learned a given state distribution, the

reconstruction overlap needs to be above this baseline value.

Figure 4.1: A plot of a uniform benchmark (in orange) on a 12 qubit product state distri-
bution

For these experiments we test the fidelity of the different model architectures when

learning the three variants of quantum distributions. The model architectures tested on

were: Variational Autoencoders with 1,2,3,4 and 5 layers and with a parameter compression

of 0.5 and 0.25 for each VAE of differing depth. We then compare these along with a

Restricted Boltzmann machine architecture also with parameter compressions of 0.5 and

0.25.

Later experiments were also run on Deep and Complex valued RBMs to test if these

variants of the standard RBM had a lower reconstruction error than that of the VAE

models.

4.2 Experiments and results

As previously stated, these experiments were run using a high end graphics card with

eleven gigabytes of memory; without access to such hardware, building and running neural

networks using TensorFlow is prohibitive at this scale, both memory and time wise.

Training the VAE for just one epoch (even with the GPU) takes a few hours, and so

adjusting hyperparameters between each set of iterations before rerunning was laborious.

Training the RBM did not take nearly as long due to its shallow architecture. The caveat
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of this of course is that the VAE models achieved better performance overall.

Model (Compression rate) Product State Random State Hard State

Baseline for comparison 0.5864 0.9371 0.9031

VAE 1 layer (50%) 0.9868 0.9317 0.8977

VAE 1 layer (25%) 0.9929 0.9325 0.8978

VAE 2 layer (50%) 0.9883 0.9317 0.9162

VAE 2 layer (25%) 0.9908 0.9323 0.9144

VAE 3 layer (50%) 0.9919 0.9311 0.9188

VAE 3 layer (25%) 0.9916 0.9316 0.9124

VAE 4 layer (50%) 0.9906 0.9300 0.9189

VAE 4 layer (25%) 0.9908 0.9312 0.9124

VAE 5 layer (50%) 0.9900 0.9314 0.9212

VAE 5 layer (25%) 0.9941 0.9289 0.9106

Real valued RBM (50%) 0.6617 0.9348 0.9008

Real valued RBM (25%) 0.6331 0.9348 0.9009

Real valued Deep RBM (50%) 0.6540 0.9348 0.7961

Real valued Deep RBM (25%) 0.6534 0.9289 0.8014

Table 4.2: The overlap results of reconstructing the Product state, Random state and
Hard state distributions using Variational Autoencoders with varying numbers of layers
in the encoder and decoder and also using three variants of the Restricted Boltzmann
machine. The baseline performance is also included to show whether or not the models
are better than the benchmark outlined in the previous section. If performance is worse
than the benchmark, then it is clear that the models are not learning the structure of the
distribution they have been tasked with learning.

4.3 Analysis

From these results in table 4.2, it is clear that our original hypothesis was correct. All

five VAE models outperform the RBM models in terms of overlap when reconstructing the

product and hard states. The slight improvement in overlap of the RBM over some of the

VAE models when reconstructing the random state can be largely ignored as the variance

in this result is very low across all the models. Intuitively, random states are not learnable,

and so any slight improvement here is not consequential.

A notable observation is that deeper VAE models (those with more layers) do not have

concretely higher fidelity than shallower models when trained on product states, although
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Figure 4.2: A plot of hard state reconstruction overlap as a function of VAE Depth. It
is evident that increasing the number of layers in a VAE encoder and decoder network
increases the learnability of a hard state. This is while keeping the number of parameters
in the network the same. Thus the number of nodes overall are proportional, so the deeper
the model, the fewer the number of nodes in a layer to maintain fairness.

there is a general upwards trend in the overlap of the hard state reconstruction with the

original as can be seen in figure 4.2. This may be due to 12 qubit state distributions not

being large enough to warrant explicit differences in the results when looking at the depth

of the networks.

Similarly, the 50% and 25% compression rates do not show much difference when com-

paring product state overlap for a given depth of VAE; however when comparing hard state

overlaps, we do find that a lower compression rate increases the overlap value. Thus we can

derive that states that are hard to learn, require the expressivity granted by more network

parameters to better learn the state distribution structure.

Examining the figures 5.3 and 4.4 which show the plots generated when we sample from

the VAE decoder and the RBM visible layer respectively, we evidently note that the VAE

reconstructed distribution very closely resembles the product state distribution whereas

the corresponding RBM distribution does not nearly achieve the same likeness.

Then when looking at the hard state reconstructions, we can see that neither model

(VAE nor RBM) manages to attain a close resemblance to the target hard state distribution.

However, as the overlap value is above that of the baseline (uniform distribution), the

models in these cases have nonetheless realized some of the structure of the hard state
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(a) 5 layer VAE reconstruction with 50%
compression rate, trained on 12 qubit prod-
uct state.

(b) 5 layer VAE reconstruction with 50%
compression rate, trained on 12 qubit hard
state.

Figure 4.3: Final reconstruction of VAE learned states after training.

(a) RBM reconstruction with 50% compres-
sion rate, trained on 12 qubit product state.
A greater range of the plot is included here
to show the overall pattern of learning.

(b) RBM reconstruction with 50% compres-
sion rate, trained on 12 qubit hard state.

Figure 4.4: Final reconstruction of (standard) RBM learned states after training.

(a) Deep RBM reconstruction with 50% com-
pression rate, trained on 12 qubit product
state. A greater range of the plot is included
here to show the overall pattern of learning.

(b) Deep RBM reconstruction with 50%
compression rate, trained on 12 qubit hard
state.

Figure 4.5: Final reconstruction of Deep RBM learned states after training.
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distribution.

Proceeding to the RBM architectures, we observe that the deep RBM achieves no-

ticeably better performance for both compression rates when compared with the standard

RBM. This is likely due to the extra computations afforded by the extra layer in the deep

model. From this we can deduce that the role of depth (to a point) is critical to recon-

struction fidelity; this is clear when contrasting shallow models such as RBMs with deep

models such as VAEs.
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Chapter 5

Multiple Bases

In this experiment we attempt to use a single variational autoencoder to learn two bases

of a state distribution. This is approximately equivalent to being tasked with learning two

probability distributions using the same VAE network. The intuition here is that due to

the two distributions being bases of the same state, there are structural similarities that

are apparent when learning them, and thus this can be exploited by the VAE and so the

model can indeed be effective in learning both bases.

As outlined in chapter 1, to form the two bases, we take an 8 qubit product state and

take the modulus squared amplitude of its state vectors (which make up the distribution).

This gives us the Z-basis. We apply the Hadamard transform to the product state and

also take the modulus squared amplitude of the transformed state vectors to generate the

X-basis.

By learning and reconstructing the two bases using the VAE decoder, we can conse-

quentially reconstruct the original state. This is will be built upon in the future work

section.

We hypothesize that we can learn both bases using a single VAE by slightly tweaking

the architecture of the VAE. To achieve this, we use a switch which acts as a one-hot vector

signalling the VAE as to which bases is being trained or sampled from. The switch takes

the form of two binary valued neurons which are input to the encoder (during training)

as well as the decoder portion (during sampling) of the VAE. We also try inputting the

switch to the latent space instead of the encoder during training to see if this improves

reconstruction accuracy.

We set the neurons to [1,0] when we want to learn or sample from the X-basis, and to

[0,1] when we want to learn or sample from the Z-basis.
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Figure 5.1: A graphical representation of the Variational Autoencoder adapted to learn
two bases. The pink nodes represent the one hot vector being used as part of the input to
the encoder when training the model while the purple nodes represent the one hot vector
being used as part of the input to the decoder when sampling to form a reconstruction.

Figure 5.2: A graphical representation of the Variational Autoencoder adapted to learn
two bases. In this alternative, the pink nodes represent the one hot vector being used as
part of the input to the latent space when training the model while the purple nodes
represent the one hot vector being used as part of the input to the decoder when sampling
to form a reconstruction.
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5.1 System Set up

We use the same loss function ass previously,

Current KLD Weight =
Maximum KL Divergence

total iterations
∗ current iteration

and also compare with the baseline uniform distribution to check that learning is occurring.

For this experiment we generate the two bases as described, then we train by randomly

choosing at every iteration either the X-basis or the Z-basis to sample from to create a

batch of samples which we then feed into the VAE. By randomly choosing the basis to

train on at every iteration, we keep the network from favouring one distribution over the

other.

Once a basis to train on has been chosen, we set the one hot vector to the corresponding

encoding and concatenate the vector to the batch of samples which is then used to train

the VAE.

We can say that the technique outlined to simultaneously learn both bases has some

merit if we have successfully reconstructed both bases with overlap values concretely above

that of the baseline overlap value for each basis.

Other vector configurations were also tested to observe whether the one-hot vector form

was optimal for signalling the current training basis to the VAE such as [0,0] and [1,1] for

the X and Z basis respectively.

Parameter Value

Total Iterations 1,000,000

Training Batch Size 500

Training Learning rate 0.001

Maximum KL Divergence Weighting in loss function 0.90

Sampling frequency Every 10,000 iterations

Total samples at each sampling interval 51,200

Sampling Batch Size 100,000

Table 5.1: VAE Training configurations for experiments on X and Z basis formed from an
8 qubit product state distribution. Here we have smaller batches to avoid overfitting to
one particular basis and larger sampling batch sizes as 8 qubits are far smaller than 12
qubit states (as before) and so we can sample far more from the decoder without running
out of GPU memory.
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(a) X-basis baseline (b) Z-basis baseline.

Figure 5.3: Baseline and X and Z bases plots where bases are generated from an 8 qubit
product state.

5.2 Experiments and results

Here we use the adapted VAE with the basis being used as a switch and being input to the

VAE at the encoder during training and to the decoder during sampling as shown in figure

5.2. The VAE was trained over a million iterations randomly alternating between training

on both bases. At the start of training, the overlap values for both fairly high (sufficiently

above the baseline).

However as training went on, it appeared that the overlap value was decreasing and

the loss for both the reconstruction loss and the KL divergence were both increasing as a

result of consequent iterations.

(a) 4 layer VAE reconstruction trained on X-
basis of 8 qubit product state.

(b) 4 layer VAE reconstruction trained on Z-
basis of 8 qubit product state.

Figure 5.4: X and Z basis reconstruction.
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Model (Compression rate) X-basis overlap Z-basis overlap

Baseline for comparison 0.6992 0.5505

VAE 4 layer 0.4552 0.6020

Table 5.2: The overlap results of reconstructing the X and Z bases formed from an 8 qubit
product state using a 4 layer Variational Autoencoder. The baseline performance is also
included to show whether or not the models are better than the uniform flat benchmark
outlined in the previous section. If performance is worse than the benchmark, then it is
clear that the models are not learning the structure of the distribution they have been
tasked with learning.

5.3 Analysis

As noted, the fidelity of the two basis reconstructions began to decrease at about 250,000

iterations after being about constant up until this point. The results in table 5.2 show

the results of the overlap accuracy after 1,000,000 iterations. The suspicion was that as

the KL Divergence weighting was steadily increasing, reconstruction loss was decreasing in

importance. This caused the VAE to slowly begin to prioritize the generalisation ability of

the network over the reconstruction accuracy.

The VAE latent space was under increasing pressure to coerce the outputs of the en-

coder onto a standard Gaussian distribution and that doing so for both basis distributions

increased the generalisation to a point where the network was almost seeing the two dis-

tributions as one.

This therefore caused the reconstruction overlap for both bases to lower. From the

results in table 5.2 we can see that for the X-basis overlap the reconstruction fidelity

decreased to below the baseline value by the final iteration.

From the plots in figure 5.4, it is evident by observing plot a) that the VAE has learnt

some of the structure of the X-basis distribution from the shape of the VAE reconstruction

plot. However upon closer inspection it can be seen that some of the structure of the

Z-basis distribution is also apparent in the reconstruction.

Similarly in plot b), it is clear that on the left of the plot we see that the VAE has

learnt some of the structure of the Z-basis distribution (especially the high peaks), however

similarly if we look at the right hand side of the reconstruction plot we also see that some

of the X-basis distribution has also been reconstructed here.

5.3.1 Further experimentation

The reasons for this are thought to be most likely due to the signal from the one hot

vector not being strong enough to indicate to the VAE as to which basis distribution we
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are learning from in a given iteration or sampling from when reconstructing.

In particular, due to the system being made up of 8 qubits (in our experiment), we have

that the output of the encoder is concatenated to our one hot vector during training in our

attempt to signal the distribution to learn. The dimension of the encoder output in this

case is 20, whereas the one hot vector only has a dimension of 2. The ratio between the

input to the latent space (output of the encoder) and the signal is fairly low. This could

be the reason for low overlap despite considerable training on both basis distributions.

Other signal vectors were also tested in an attempt to increase the resulting overlap

value for the respective basis reconstructions. Attempts such as having a vector with a

dimension size of 4, i.e (0,0,0,0) and (1,1,1,1) for the X and Z basis respectively were tried.

In these instances it was found that the input was almost corrupted by the size of the

one hot vector and this led to worse initial (as well as deteriorating) performance than

previously. The original one hot vectors ([0,1] and [1,0]) were found to give the best results

when generalizing across quantum systems of different sizes, e.g. for 8 and 12 qubit systems.
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Chapter 6

Conclusions

6.1 Achievements

To conclude, in this project we have constructed Variational Autoencoders of varying

depths and trained them to learn and sufficiently accurately reconstruct product, hard and

random quantum state distributions.

We have also trained a Restricted Boltzmann machine to learn and reconstruct product,

hard and random quantum state distributions. With our results we have shown that a

VAE with 5 layers outperforms those with fewer layers, and that all of the VAE models

outperform the RBM when it comes to reconstruction overlap accuracy when compared

with the three state distributions.

We then went on to construct and train deep and complex RBM models based on

[8] in an effort to improve on the original RBM results. This however did not prove very

fruitful, perhaps a different implementation based more closely on [12] could better harness

the complex valued nature of the states. Concretely we have shown that the depth of a

generative network is key in reconstruction accuracy; this is evident in both the VAE

and in the RBM. We still show that despite the adjustments to the original Restricted

Boltzmann machine, the Variational Autoencoders should still be the generative artificial

neural network model of choice when conducting quantum state tomography.

Our second experiment outlined and demonstrated a technique for learning a complete

set of bases using a single Variational Autoencoder. After much work and testing, while the

final results were not what we expected, with more work the desired outcome is certainly

a possibility.

Once this has been achieved, our other advanced goal of reconstructing the full state

from the learned VAE representation follows readily as all one must do to reconstruct the

full state is sample from both bases (using a single VAE) with a sufficient level of fidelity

to the original basis distributions.
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6.2 Evaluation

The experiments in themselves require computing hardware with sufficient parallel pro-

cessing power and memory to run and store the large computational graphs we require to

run the models. Perhaps running the experiments with fewer qubit systems could have

allowed more experimentation as the run time of said experiments would have been lower.

Then the time required to run these experiments once said GPUs were up and running

was prohibitive in some cases when attempting to get an optimal result. This was especially

apparent with the second experiment where the network had to train for a few hours before

it was clear whether or not a proposed alteration to the signalling method would be fruitful.

Overall the implementations were robust, and as expected the RBM did not fare very

well in learning the state distributions. This is expected, however the shape of the recon-

struction by the RBM doesn’t follow the shape of the state distribution very well; although

the overlap is somewhat above the baseline value for all three states which is reassuring.

Although the plots produced by the VAE in the second experiment do roughly follow

the basis distributions, the overlap value is fairly low; it is evident that the VAE is learning

something, however there is no way to quantify this other than the overlap which is low.

Perhaps another measure of distribution similarity could have been used to reflect this.

Due to the almost black box nature of the VAE in particular, it was difficult to diagnose

the faults with the one hot vector solution in signalling the network as to which distribution

was to be learned or reproduced. for this reason extensive experimentation had to be carried

out to see if the performance of the VAE model with a one hot switch could be improved to

a sufficient level. Unfortunately after countless hours of experimentation, the cause is still

not very clear due to closed nature of neural networks in general. Experiments themselves

were arduous to run due to the limited access to the GPUs.

The upside of all this is that neural networks represent a very powerful approximation

paradigm and is very clearly the ideal means to perform quantum state tomography.

6.3 Future Work

As previously mentioned as one of the advanced aims of the project, reconstructing a full

state would be the logical next step once we have successfully learned and reconstructed

more than one basis of a state using a VAE. The involves using the one-hot vector to

sample from both bases and reconstructing both distributions before combining them to

reform the original full state.

Another advanced aim was to examine the distribution learned by the VAE encoder

and potentially use this to reconstruct the state distribution. The advantage here is that

instead of using the decoder and sampling from it to form a sampling distribution, we
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can instead determine the distribution concretely from the encoder as we do not require

sampling here. This saves on computation and improves our accuracy as we have access to

the actual learned distribution instead of a sampled one.

Moving onto the switch mechanism itself for signalling to the VAE which distribution to

currently learn, we could instead use a neural network to act as this signal instead which is

also input to the encoder during training and to the decoder when sampling. The advantage

of using a neural network instead of a static switch (one hot encoder) is that the neural

network is trainable, and so we can define the loss function of the network as the difference

between the distribution it predicts is being input and the actual distribution being input

on that iteration. We then add this loss to our overall loss function for the VAE and

try different weightings of the 3 loss components in order to optimize final reconstruction

accuracy.

Other future work includes possibly using other generative models to contrast with the

performance of the VAE in Quantum state tomography; for example, Generative Adver-

sarial networks (GANs) [3] could prove useful in this regard and have shown to display

remarkable results in other sub-fields of Machine Learning. The structure of the generative

network of a GAN is somewhat similar to that of a VAE so not too much work is needed

to test this.
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Justin Jude 

Project: Representing quantum states with variational autoencoders 
 
Motivation: The description of a quantum state can be exponential in the number of qubits . 
Describing quantum states through classical means becomes intractable when the number of 
qubits is large. To overcome this approximation methods can be used effectively in some cases. 
Recently machine learning techniques have shown promise in learning approximate 
representations of large quantum states: 1) https://arxiv.org/abs/1703.05334 and their 
associated distributions 2) https://arxiv.org/abs/1710.00725. Representing large states is of 
great relevance to many-body physics and for characterising near term quantum devices. 
 
2) May have advantages over existing methods because encodes states in a deep network. 
Depth is known to be efficient for many problems. However, so far 2) has only been used to 
encode quantum distributions and not actual state vectors.  
 
 
Tasks:  
a) Adapt the VAE to learn the distribution of a state on a complete set of bases. (Done) 
 
b) Reconstruct the full state from the learned representation (Currently doing). 
 
c) The VAE encodes the distribution of data in both the encoder and the decoder. Existing work 
uses the decoder to reconstruct the distribution. Using the encoder has some advantages 
because it does not rely on sampling. The probability of each data-point (measurement 
outcome) can be determined directly.  In this part of the project you will test and compare the 
fidelity of the distribution learned by the VAE encoder.  
 
d) TBD 
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● Name: Justin Jude 
 

● Project Title:  
○ Representing quantum states with variational autoencoders 

 
● Current Project Title:  

○ Representing quantum states with variational autoencoders and restricted 
Boltzmann machines 

 
● Internal Supervisor Name: Simone Severini 

 
● Progress made to date 

 
○ Adapt the VAE to learn the distribution of a state on a complete set of bases.  

 
This has been somewhat achieved although the network architecture needs to be 
changed and improved in order to much more accurately learn more than one basis. 
Currently we have an accuracy of around 0.93 for both bases, ideally this would be much 
closer to 1.0. In order to achieve this I will work on adjusting the network architecture to 
include one hot vectors to represent the training of different bases in a fashion that more 
faithfully preserves the two distributions. This will require substantial experimentation. 
 

○ Learn the distribution of a 12 qubit product state on one basis using a Restricted 
Boltzmann Machine. 

 
This has been achieved in order to contrast the fidelity of the distribution learnt by the 
RBM to that learnt by the VAE. Currently we have an accuracy of ~0.984 using the RBM 
to learn the distribution with 7 nodes in the hidden layer. With some experimentation this 
should be improved upon. We can vary the hidden layer dimension and vary the learning 
rate etc. When having equal compression ratios we get: 
 

Performance (overlap) of Models (compression) for each state type 

Model Product State Random State Hard State 

VAE 1 layer  (50%)    

VAE 1 layer (25%)     

VAE 2 layer  (50%)    

VAE 2 layer (25%)     

VAE 3 layer  (50%)    



VAE 3 layer (25%)     

VAE 4 layer  (50%) 
22 nodes per layer 

0.993   

VAE 4 layer (25%)  
14 nodes per layer 

0.977   

VAE 5 layer  (50%)    

VAE 5 layer (25%)     

Real valued RBM 
(50%) 

34 nodes per layer 

0.673   

Real valued RBM 
(25%) 

22 nodes per layer 

0.807   

When we compress further, the expectation is that the VAE will continue to outperform the RBM 
as it can exploit depth efficiency. 
 

● Remaining work to be done before the final report deadline 
○ Use the RBM to learn harder states (such as random states and ‘hard’ states). 
○ (If time) Implement a complex valued RBM for the same task 
○ Test on a range of VAEs with differing depths. 

 
○ Reconstruct the full state from the learned VAE representation. 

Sample from the complete set of bases to reconstruct the original state. Firstly I will need 
to sufficiently adapt the VAE to learn the distribution on a complete set of bases. Once a 
fidelity of ~1.0 has been reached I can move onto this task. 
 

○ (If time) Test and compare the fidelity of the distribution learned by the VAE 
encoder. 

Using the encoder has some advantages because it does not rely on sampling 
  

○ (If time) Adapt the RBM to Learn the distribution of a state on a complete set of 
bases 

Similar to the ongoing task with the VAE. This could require more experimentation as the 
network architecture of the RBM is more rigid. 
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Listing C.1: Learning multiple bases

## VAE l ea rn i ng d i s t r i b u t i o n s

”””

Fu l l s t a t e 4 l a y e r . py

Used in Chapter 5 − Multple bases

Created on Tue Feb 13 22 : 26 : 04 2018

@author : j u s t i n j ud e

BASED ON ORIGINAL WORK BY EDWARD GRANT

”””

# Imports

from f u t u r e import d i v i s i o n

from f u t u r e import p r i n t f u n c t i o n

import numpy as np

import random

import os

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import os . path

from s c ipy . s t a t s import ortho group

import s c ipy

import i t e r t o o l s

from s t a t e g en ha rd import ∗
from network too l s import ∗
from s t a t e t o o l s import ∗
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from s t a t e g en t ime evo l u t i o n import ∗
import sys

from qut ip import ∗
sys . dont wr i t e bytecode = True

cwd = os . getcwd ( )

from s c ipy . l i n a l g import hadamard as hdm

# Seed

np . random . seed (0 )

t f . set random seed (0 )

eps = 1e−40

# Get hard d i s t r i b u t i o n https : // arx iv . org /abs /1507.05592

# Di s t r i bu t i on parameters = Lˆnˆ2 , qubit number = log2 ( parameters )

n = 3# Dimension o f f a c t o r a d i c f o r s t r e l chuk d i s t i r b u t i o n

L = 4 # Sample items f o r s t r e l chuk d i s t i r b u t i o n

num qubits = 6#Number o f qub i t s

def g e t p r odu c t s t a t e ( num qubits ) :

s t a t e = qut ip . rand ket (2∗∗1)
s t a t e = s t a t e . f u l l ( )

for i in range ( num qubits−1) :
qubit = qut ip . rand ket (2∗∗1)
s t a t e = np . kron ( s tate , qubit . f u l l ( ) )

return s t a t e

s t a t e = ge t p r odu c t s t a t e ( num qubits )

hadamard = np . matrix ( [ [ 1 , 1 ] , [ 1 , − 1 ] ] ) ∗ (1/np . sq r t (2 ) )

kron hadamard = tenso r produc t ( num qubits , hadamard , hadamard )

p truth = s t a t e . reshape ( [ −1 ,1 ] )

xxx = np . abs ( p t ruth ) ∗∗2
Xxx = xxx/np .sum( xxx )

hd = hdm(2∗∗ num qubits )

zzz = np . matmul (hd , p t ruth )

zzz = zzz . t o l i s t ( )

zzz = np . abs ( zzz ) ∗∗2
zzz = zzz /np .sum( zzz )
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xxx = [ item for s u b l i s t in xxx for item in s u b l i s t ]

zzz = [ item for s u b l i s t in zzz for item in s u b l i s t ]

# Train ing c on f i g

i t e r a t i o n s = 1000000 # Number o f t r a i n i n g i t e r a t i o n s 1000000

d i s p l a y e r r o r f r e qu en c y= 1000

# Number o f measurements to sample from VAE decoder

num z samples = 500000∗2∗∗ num qubits

sample z f r equency = 10000

ba t ch s i z e = 1000

# Batch s i z e f o r sampling

ba t ch s i z e s amp l i ng = 100000

#l e a rn i ng ra t e

l r = 0.001

# Max weight ing f o r KLD wwarmup https : // arx iv . org /pdf /1602 .02282 . pdf

KLD weight max = 0.80

# Network s t r u c tu r e

num layers = 1#Number o f l a y e r s

compre s s i on ra t e s chedu l e = np . array ( [ 1 0 . 0 ] )

num params schedule = compre s s i on ra t e s chedu l e ∗(2∗∗ num qubits )#Total params

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

# Flat d i s t r i b u t i o n f o r benchmarking

p f l a t= g e t un i f o rm d i s t r i b u t i o n ( num qubits )

# Benchmark ta r g e t d i s t r i b u t i o n s

over laps benchmark xxx= g e t s t a t e o v e r l a p ( xxx , p f l a t )

over laps benchmark zzz= g e t s t a t e o v e r l a p ( zzz , p f l a t )

print ( ”Benchmark XXX: ” + str ( over laps benchmark xxx ) )

print ( ”Benchmark ZZZ : ” + str ( over laps benchmark zzz ) )

np . save ( save loc benchmarks , over laps benchmark xxx )

p l o t t e r ( xxx [ 0 : 5 0 0 ] , p f l a t [ 0 : 5 0 0 ] )

p l o t t e r ( zzz [ 0 : 5 0 0 ] , p f l a t [ 0 : 5 0 0 ] )

p p l o t = zzz [ 0 : 2 5 0 ]

#p l o t t e r ( p t ruth [ 0 : 1 0 0 ] , p f l a t [ 0 : 1 0 0 ] )

t i t l e = ”Changed Bas i s State D i s t r i bu t i on ”

p l t . p l o t ( p p l o t )

p l t . t i t l e ( t i t l e )
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p l t . x l ab e l ( ’Measurement ’ , f o n t s i z e = 15)

p l t . y l ab e l ( ’ P robab i l i t y ’ , f o n t s i z e = 15)

#p l t . l egend ( l o c=’upper l e f t ’ )

p l t . yl im ( [ 0 , np .max( p p l o t ) ] )

# Experiment − Overlap by number o f params

#KLD warmup https : // arx iv . org /pdf /1602 .02282 . pdf

KLD weight schedule = np . l i n s p a c e (0 , KLD weight max , i t e r a t i o n s )

# Save number o f parameters

num params keep=np . z e ro s ( len ( num params schedule ) )

for i in range ( len ( num params schedule ) ) :

# Index o f over lap c a l c u l au t i o n . Get over lap s e v e r a l t imes during

t r a i n i n g .

ove r l ap ind = int (0 )

# Number o f decoder parameters

num params = num params schedule [ i ]

num params keep [ i ]=num params

np . save ( save loc params , num params keep )

# Number o f nodes f o r f i x ed number o f network params

num nodes = get node number ( num qubits , num layers , num params )

# Network con f i g

input dim = num qubits #6

encoder dim = 20 #num nodes

print ( encoder dim , ” encoder dim” )

la tent d im = 20#num nodes

decoder dim = 20 #num nodes

num layers encoder = num layers #1

num layers decoder = num layers #1

#TF p l a c eho l d e r s

#ba s i s = t f . p l a c eho ld e r ( t f . int32 , shape=[ l en ( xxx ) ∗ 2 , ] )

x = t f . p l a c eho ld e r ( ” f l o a t ” , shape=[None , input dim ] )

i s t r a i n i n g = t f . p l a c eho ld e r ( t f . bool )

KLD weight = t f . p l a c eho lde r ( ” f l o a t ” )

ba s i s = t f . p l a c eho lde r ( ” f l o a t ” , shape=[None , 2 ] )

# Network

encoder = make encoder network bas i s (x , num qubits , num layers encoder ,

encoder dim , latent d im , i s t r a i n i n g , b a s i s )

z , mu encoder , l ogva r encode r = make z network ( encoder , encoder dim ,

latent d im , eps )

decoder = make decoder network bas i s ( z , num qubits , num layers decoder ,

decoder dim , latent d im , i s t r a i n i n g , b a s i s )
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x hat s igmo id =t f . nn . s igmoid ( decoder )

# Objec t ive s

BCE = t f . reduce sum ( t f . nn . s i gmo i d c r o s s e n t r o py w i t h l o g i t s ( l o g i t s=

decoder , l a b e l s=x) , r e du c t i o n i nd i c e s =1) # Binary c r o s s entropy

KLD = −0.5 ∗ t f . reduce sum (1 . 0 + logvar encode r − t f . square ( mu encoder ) −
t f . exp ( l ogvar encode r ) , r e du c t i o n i n d i c e s =1) # KLD r e g u l a r i z e r

l o s s = t f . reduce mean (BCE + KLD∗KLD weight )

# Update ops

update ops = t f . g e t c o l l e c t i o n ( t f . GraphKeys .UPDATE OPS)

with t f . c on t r o l d ependenc i e s ( update ops ) :

t r a i n s t e p = t f . t r a i n . AdamOptimizer ( l r ) . minimize ( l o s s ) # https : //

arx iv . org /abs /1412.6980

# I n i t TF s e s s i o n

s e s s = t f . I n t e r a c t i v e S e s s i o n ( )

# I i n i t TF va r i a b l e s

t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) . run ( )

# Train network

for i t e r a t i o n in range ( i t e r a t i o n s ) :

d i s t t o l e a r n = np . random . cho i c e ( [ 0 , 1 ] )

i f d i s t t o l e a r n == 0 :

to sample = xxx ;

one hot = [ 0 , 1 ]

else :

to sample = zzz ;

one hot = [ 1 , 0 ]

one hot rep = np . t i l e ( one hot , ( ba t ch s i z e , 1 ) )

batch = get batch2 ( to sample , binary perms , b a t ch s i z e )

s e s s . run ( [ t r a i n s t e p ] , f e e d d i c t={ba s i s : one hot rep , x : batch ,

i s t r a i n i n g : True , KLD weight : KLD weight schedule [ i t e r a t i o n ] } )

i f ( i t e r a t i o n +1) % d i s p l a y e r r o r f r e qu en c y == 0 : # Display e r r o r s

BCE tmp = BCE. eval ( f e e d d i c t={ba s i s : one hot rep , x : batch ,

i s t r a i n i n g : False , KLD weight : KLD weight schedule [ i t e r a t i o n ] } )
# Get BCE e r r o r

KLD tmp = KLD. eval ( f e e d d i c t={ba s i s : one hot rep , x : batch ,

i s t r a i n i n g : False , KLD weight : KLD weight schedule [ i t e r a t i o n ] } )
# Get KLD e r r r o r

d i s p l a y e r r o r s (BCE tmp ,KLD tmp , i t e r a t i o n , i t e r a t i o n s ) # Display

e r r o r s
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i f ( i t e r a t i o n +1) % sample z f r equency == 0 : # Samples from z

one hot rep = np . t i l e ( one hot , ( ba t ch s i z e samp l ing , 1 ) )

z sample = np . random . normal ( 0 , 1 , ( ba t ch s i z e samp l ing , l a t ent d im ) )

VAE out = x hat s igmo id . eval ( f e e d d i c t={ba s i s : one hot rep , z :

z sample , i s t r a i n i n g : Fa l se })
for samp l ing batch i in range ( int ( num z samples /

batch s i z e samp l ing −1) ) :
z sample = np . random . normal ( 0 , 1 , ( ba t ch s i z e samp l ing ,

l a t ent d im ) )

print ( ”Sampling batch ” + str ( samp l ing batch i )+’ o f ’+str (

int ( num z samples / batch s i z e samp l ing −1) ) )
out tmp = x hat s igmo id . eval ( f e e d d i c t={ba s i s : one hot rep , z

: z sample , i s t r a i n i n g : Fa l se })
VAE out = np . append (VAE out , out tmp , ax i s=0)

VAE out binary = VAE out>0.5# Step func t i on f o r VAE outputs that

must be 0 or 1

p gen = get d i s t f rom generated measurements ( VAE out binary ,

binary perms )#Get d i s t r i b u t i o n o f measurements

#ove r l ap s [ i , ov e r l ap ind ] = g e t s t a t e o v e r l a p ( p truth , p gen )#

Calcu la te the over lap

i f d i s t t o l e a r n == 0 :

over laps xxx = g e t s t a t e o v e r l a p ( xxx , p gen )# Calcu la t e the

XXX over lap

print ( ’XXX Overlap i s : ’ + str ( over laps xxx ) )

p gen xxx = p gen

p l o t t e r ( xxx [ 0 : 5 0 0 ] , p gen xxx [ 0 : 5 0 0 ] )

else :

o v e r l ap s z z z = g e t s t a t e o v e r l a p ( zzz , p gen )# Calcu la t e the

ZZZ over lap

print ( ’ZZZ Overlap i s : ’ + str ( o v e r l ap s z z z ) )

p gen zzz = p gen

p l o t t e r ( zzz [ 0 : 5 0 0 ] , p gen zzz [ 0 : 5 0 0 ] )

ove r l ap ind = ove r l ap ind + 1 # Increment the index o f over lap .

Many are s to r ed during each t r a i n .

s e s s . c l o s e ( )

t f . r e s e t d e f a u l t g r a ph ( )

Listing C.2: Standard RBM

#!/ usr /bin /env python3

# −∗− coding : utf−8 −∗−
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”””

Created on Tue Dec 12 01 : 07 : 51 2017

@author : j u s t i n j ud e

STANDARD RBM IMPLEMENTATION

”””

#https : // arx iv . org /pdf /1703 .05334 . pdf

from f u t u r e import d i v i s i o n

from f u t u r e import p r i n t f u n c t i o n

import numpy as np

import random

import os

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import os . path

from s c ipy . s t a t s import ortho group

import s c ipy

import i t e r t o o l s

from s t a t e g en ha rd import ∗
from network too l s import ∗
from s t a t e t o o l s import ∗
from s t a t e g en t ime evo l u t i o n import ∗
from rbm too l s import ∗
import sys

from qut ip import ∗
import numpy as np

import pandas as pd

#import msgpack

import glob

import t en so r f l ow as t f

from t en so r f l ow . python . ops import c on t r o l f l ow op s

from tqdm import tqdm

sys . dont wr i t e bytecode = True

cwd = os . getcwd ( )

# Seed

np . random . seed (0 )

t f . set random seed (0 )

eps = 1e−40
d i s t s =[ ]

d i s t names =[ ]

# l o c a t i o n o f over lap f i l e

s a v e l o c o v e r l a p s = cwd+’ / r e su l t s l a y e r s r andom / over l aps l aye r s random ’

#load random ket s
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num qubits = 18 #Number o f qub i t s

s t a t e = qut ip . rand ket (2∗∗ num qubits )

p t ruth = np . abs ( s t a t e . f u l l ( ) ) ∗∗2
d i s t s . append ( p truth )

d i s t names . append ( ’Random ’ )

n = 3# Dimension o f f a c t o r a d i c f o r s t r e l chuk d i s t i r b u t i o n

L = 4 # Sample items f o r s t r e l chuk d i s t i r b u t i o n

num qubits = int (np . log2 (L∗∗n∗∗2) ) #Number o f qub i t s 18

p truth = g e t h a r d d i s t r i b u t i o n (n , L ,mode = ’ f u l l ’ )

d i s t s . append ( p truth )

d i s t names . append ( ’Hard ’ )

p truth2=g e t p r odu c t d i s t r i b u t i o n ( num qubits )

p truth2=p truth2 /np .sum( p truth2 )

d i s t s . append ( p truth2 )

d i s t names . append ( ’ Product ’ )

# Network s t r u c tu r e

num layer s schedu le = np . array ( [ 1 ] ) #Number o f l a y e r s

compre s s i on ra t e s chedu l e = np . array ( [ 0 . 5 , 0 . 2 5 ] )

num params schedule = compre s s i on ra t e s chedu l e ∗(2∗∗ num qubits )#Total params

# Train ing c on f i g

i t e r a t i o n s = 100000# Number o f t r a i n i n g i t e r a t i o n s

d i s p l a y e r r o r f r e qu en c y= 1000

num z samples = 50∗2∗∗ num qubits # NUmber o f measurements to samplse from VAE

decoder

sample z f r equency = 10000

ba t ch s i z e = 50000 # S i z e o f t r a i n i n g batches

ba t ch s i z e s amp l i ng = 50000 # Batch s i z e f o r sampling

l r = 0.001 #l e a rn i ng ra t e

KLD weight max = 0.85 # Max weight ing f o r KLD warmup https : // arx iv . org /pdf

/1602 .02282 . pdf

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

# Store ove r l ap s

ove r l ap s = np . z e r o s ( ( num params schedule . shape [ 0 ] , num layer s schedu le . shape

[ 0 ] , int ( i t e r a t i o n s / sample z f r equency ) ) ) # Store the best ove r l ap s

obta ined during t r a i n i n g

# Flat d i s t r i b u t i o n f o r benchmarking

p f l a t= g e t un i f o rm d i s t r i b u t i o n ( num qubits )

55



epochs = 1

v i s i b l e d im = num qubits

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

p gen =[ ]

#Build Network

VAE out=[ ]

for d i s t in range (0 , p t ruth . shape [ 0 ] ) :

p t ruth = d i s t s [ d i s t ] [ 0 : 1 0 0 ]

#p l o t t e r ( p t ruth [ 0 : 1 0 0 ] , p f l a t [ 0 : 1 0 0 ] )

t i t l e = dist names [ d i s t ] + ” State D i s t r i bu t i on ”

p l t . p l o t ( p t ruth )

p l t . t i t l e ( t i t l e )

p l t . x l ab e l ( ’Measurement ’ , f o n t s i z e = 15)

p l t . y l ab e l ( ’ P robab i l i t y ’ , f o n t s i z e = 15)

#p l t . l egend ( l o c=’upper l e f t ’ )

p l t . yl im ( [ 0 , np .max( p t ruth ) ] )

p l t . s a v e f i g ( t i t l e )

p l t . show ( )

with t f . S e s s i on ( ) as s e s s :

for d i s t in range (0 , p t ruth . shape [ 0 ] ) :

p t ruth = d i s t s [ d i s t ]

print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p f l a t ) ) )

p l o t t e r ( p t ruth [ 0 : 1 0 0 ] , p f l a t [ 0 : 1 0 0 ] )

for i i in range ( num params schedule . shape [ 0 ] ) :

v i s i b l e d im = num qubits

num params = num params schedule [ i i ]

num nodes = get node number ( num qubits , 1 , num params ) # Number o f

nodes f o r f i x ed number o f network params

hidden dim = num nodes

print ( ”Hidden Dim : ” , hidden dim )

x = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , v i s i b l e d im ] , name = ”x” ) #

p la c eho ld e r f o r input

W = t f . Var iab le ( t f . random normal ( [ v i s i b l e d im , hidden dim ] , (2/

v i s i b l e d im ) ) , name = ”W”) #weight matrix between v i s i b l e and

hidden l ay e r

bh = t f . Var iab le ( t f . z e r o s ( [ 1 , hidden dim ] , t f . f l o a t32 , name = ”bh

” ) ) #b ia s vec to r f o r hidden l ay e r

bv = t f . Var iab le ( t f . z e r o s ( [ 1 , v i s i b l e d im ] , t f . f l o a t32 , name = ”

bv” ) )#b ia s vec to r f o r v i s i b l e l a y e r

x sample = gibbs sample (1 , x ,W, bh , bv )

h = sample bin ( t f . s igmoid ( t f . matmul (x , W) + bh) )

h sample = sample bin ( t f . s igmoid ( t f . matmul ( x sample , W) + bh) )
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#Contras t ive Divergence

s i z e b t = t f . c a s t ( t f . shape (x ) [ 0 ] , t f . f l o a t 3 2 )

W adder = t f . mul t ip ly ( l r / s i z e b t , t f . subt rac t ( t f . matmul ( t f .

t ranspose (x ) , h ) , t f . matmul ( t f . t ranspose ( x sample ) , h sample )

) )

bv adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t (x ,

x sample ) , 0 , True ) )

bh adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t (h ,

h sample ) , 0 , True ) )

updt = [W. as s i gn add (W adder ) , bv . a s s i gn add ( bv adder ) , bh .

a s s i gn add ( bh adder ) ]

#Fi r s t , we t r a i n the model

#i n i t i a l i z e the v a r i a b l e s o f the model

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

s e s s . run ( i n i t )

for epoch in range ( epochs ) :

for i t e r a t i o n in tqdm( range ( i t e r a t i o n s ) ) :

i f d i s t == 0 :

batch = g e t b a t c h f u l l s t a t e ( p truth , binary perms ,

b a t ch s i z e )

else :

batch = get batch2 ( p truth , binary perms , b a t ch s i z e )

#t r x = song [ i : i+ba t ch s i z e ]

s e s s . run ( [ updt ] , f e e d d i c t={x : batch })
i f ( i t e r a t i o n +1) == i t e r a t i o n s : # Samples from z

VAE out = gibbs sample (1 , x ,W, bh , bv ) . eval ( s e s s i o n=ses s ,

f e e d d i c t={x : np . z e r o s ( ( ba tch s i z e samp l ing ,

v i s i b l e d im ) ) })
for samp l ing batch i in range ( int ( num z samples /

batch s i z e samp l ing −1) ) :
print ( ”Sampling batch ” + str ( samp l ing batch i )+’

o f ’+str ( int ( num z samples / batch s i z e samp l ing

−1) ) )
sample = gibbs sample (1 , x ,W, bh , bv ) . eval ( s e s s i o n=

ses s , f e e d d i c t={x : np . z e r o s ( (

ba tch s i z e samp l ing , v i s i b l e d im ) ) })
VAE out = np . append (VAE out , sample , ax i s=0)

VAE out binary = VAE out>0.5# Step func t i on f o r VAE

outputs that must be 0 or 1

p gen = get d i s t f rom generated measurements (

VAE out binary , binary perms )#Get d i s t r i b u t i o n o f

measurements
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print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p gen ) ) )

p l o t t e r 2 ( p t ruth [ 0 : 1 0 0 ] , p gen [ 0 : 1 0 0 ] , 1 , c ompre s s i on ra t e s chedu l e [

i i ] , d i s t names [ d i s t ] , g e t s t a t e o v e r l a p ( p truth , p gen ) )

Listing C.3: Deep RBM

#!/ usr /bin /env python3

# −∗− coding : utf−8 −∗−
”””

Created on Tue Dec 12 01 : 07 : 51 2017

@author : j u s t i n j ud e

DEEP RBM IMPLEMENTATION

”””

#https : // arx iv . org /pdf /1703 .05334 . pdf

from f u t u r e import d i v i s i o n

from f u t u r e import p r i n t f u n c t i o n

import numpy as np

import random

import os

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import os . path

from s c ipy . s t a t s import ortho group

import s c ipy

import i t e r t o o l s

from s t a t e g en ha rd import ∗
from network too l s import ∗
from s t a t e t o o l s import ∗
from s t a t e g en t ime evo l u t i o n import ∗
from rbm too l s import ∗
import sys

from qut ip import ∗
import numpy as np

import pandas as pd

#import msgpack

import glob

import t en so r f l ow as t f

from t en so r f l ow . python . ops import c on t r o l f l ow op s

from tqdm import tqdm

sys . dont wr i t e bytecode = True

cwd = os . getcwd ( )

# Seed

np . random . seed (0 )
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t f . set random seed (0 )

eps = 1e−40
d i s t s =[ ]

d i s t names =[ ]

# l o c a t i o n o f over lap f i l e

s a v e l o c o v e r l a p s = cwd+’ / r e su l t s l a y e r s r andom / over l aps l aye r s random ’

#load random ket s

num qubits = 9 #Number o f qub i t s

s t a t e = qut ip . rand ket (2∗∗ num qubits )

p t ruth = np . abs ( s t a t e . f u l l ( ) ) ∗∗2
d i s t s . append ( p truth )

d i s t names . append ( ’Random ’ )

n = 3# Dimension o f f a c t o r a d i c f o r s t r e l chuk d i s t i r b u t i o n

L = 2 # Sample items f o r s t r e l chuk d i s t i r b u t i o n

num qubits = int (np . log2 (L∗∗n∗∗2) ) #Number o f qub i t s 18

p truth = g e t h a r d d i s t r i b u t i o n (n , L ,mode = ’ f u l l ’ )

d i s t s . append ( p truth )

d i s t names . append ( ’Hard ’ )

p truth2=g e t p r odu c t d i s t r i b u t i o n ( num qubits )

p truth2=p truth2 /np .sum( p truth2 )

d i s t s . append ( p truth2 )

d i s t names . append ( ’ Product ’ )

# Network s t r u c tu r e

num layer s schedu le = np . array ( [ 1 ] ) #Number o f l a y e r s

compre s s i on ra t e s chedu l e = np . array ( [ 0 . 5 , 0 . 2 5 ] )

num params schedule = compre s s i on ra t e s chedu l e ∗(2∗∗ num qubits )#Total params

# Train ing c on f i g

i t e r a t i o n s = 1000# Number o f t r a i n i n g i t e r a t i o n s

d i s p l a y e r r o r f r e qu en c y= 1000

num z samples = 5000∗2∗∗ num qubits # NUmber o f measurements to samplse from

VAE decoder

sample z f r equency = 10000

ba t ch s i z e = 5000 # S i z e o f t r a i n i n g batches

ba t ch s i z e s amp l i ng = 50000 # Batch s i z e f o r sampling

l r = 0.001 #l e a rn i ng ra t e

KLD weight max = 0.85 # Max weight ing f o r KLD warmup https : // arx iv . org /pdf

/1602 .02282 . pdf

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )
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# Store ove r l ap s

ove r l ap s = np . z e r o s ( ( num params schedule . shape [ 0 ] , num layer s schedu le . shape

[ 0 ] , int ( i t e r a t i o n s / sample z f r equency ) ) ) # Store the best ove r l ap s

obta ined during t r a i n i n g

#overlaps benchmark = np . z e r o s ( num params schedule . shape [ 0 ] ) # Overlap

between ta r g e t s t a t e and maximally mixed ( f l a t ) s t a t e

# Flat d i s t r i b u t i o n f o r benchmarking

p f l a t= g e t un i f o rm d i s t r i b u t i o n ( num qubits )

# Train ing c on f i g

#i t e r a t i o n s = 100000 # Number o f t r a i n i n g i t e r a t i o n s 1000000

#ba t ch s i z e = 100 # S i z e o f t r a i n i n g batches 500

#bat ch s i z e s amp l i ng = 1000000 # Batch s i z e f o r sampling

#l r = 0.005 #l e a rn i ng ra t e

epochs = 1

v i s i b l e d im = num qubits

#hidden dim = 22 #7 in the hidden l ay e r seems to be optimal r e g a r d l e s s o f

num qubits

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

p gen =[ ]

#Build Network

VAE out=[ ]

with t f . S e s s i on ( ) as s e s s :

for d i s t in range (1 , p t ruth . shape [ 0 ] ) :

p t ruth = d i s t s [ d i s t ]

print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p f l a t ) ) )

p l o t t e r ( p t ruth [ 0 : 5 0 0 ] , p f l a t [ 0 : 5 0 0 ] )

for i i in range ( num params schedule . shape [ 0 ] ) :

v i s i b l e d im = num qubits

num params = num params schedule [ i i ]

num nodes = get node number ( num qubits , 1 , num params ) # Number o f

nodes f o r f i x ed number o f network params

hidden dim = num nodes

print ( ”Hidden Dim : ” , hidden dim )

x = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , v i s i b l e d im ] , name = ”x” ) #

p la c eho ld e r f o r input

W = t f . Var iab le ( t f . random normal ( [ v i s i b l e d im , hidden dim ] , (2/

v i s i b l e d im ) ) , name = ”W”) #weight matrix between v i s i b l e and

hidden l ay e r

W2 = t f . Var iab le ( t f . random normal ( [ hidden dim , hidden dim ] , (2/

hidden dim ) ) , name = ”W2” ) #weight matrix between v i s i b l e and

hidden l ay e r

bh = t f . Var iab le ( t f . z e r o s ( [ 1 , hidden dim ] , t f . f l o a t32 , name = ”bh

” ) ) #b ia s vec to r f o r hidden l ay e r
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bh2 = t f . Var iab le ( t f . z e r o s ( [ 1 , hidden dim ] , t f . f l o a t32 , name = ”

bh2” ) ) #b ia s vec to r f o r hidden l ay e r

bv = t f . Var iab le ( t f . z e r o s ( [ 1 , v i s i b l e d im ] , t f . f l o a t32 , name = ”

bv” ) )#b ia s vec to r f o r v i s i b l e l a y e r

x sample = gibbs sample deep (10 , x ,W,W2, bh , bh2 , bv )

l 1 = sample bin ( t f . s igmoid ( t f . matmul (x , W) + bh) )

l1 sample = sample bin ( t f . s igmoid ( t f . matmul ( x sample , W) + bh) )

h = sample bin ( t f . s igmoid ( t f . matmul ( l1 , W2) + bh2 ) )

h sample = sample bin ( t f . s igmoid ( t f . matmul ( l1 sample , W2) + bh2 ) )

#Next , we update the va lue s o f W, bh , and bv , based on the

d i f f e r e n c e between the samples that we drew and the o r i g i n a l

va lue s

s i z e b t = t f . c a s t ( t f . shape (x ) [ 0 ] , t f . f l o a t 3 2 )

W adder = t f . mul t ip ly ( l r / s i z e b t , t f . subt rac t ( t f . matmul ( t f .

t ranspose (x ) , l 1 ) , t f . matmul ( t f . t ranspose ( x sample ) ,

l 1 sample ) ) )

W2 adder = t f . mul t ip ly ( l r / s i z e b t , t f . subt rac t ( t f . matmul ( t f .

t ranspose ( l 1 ) , h ) , t f . matmul ( t f . t ranspose ( l1 sample ) ,

h sample ) ) )

bv adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t (x ,

x sample ) , 0 , True ) )

bh adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t ( l1 ,

l 1 sample ) , 0 , True ) )

bh2 adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t (h ,

h sample ) , 0 , True ) )

#When we do s e s s . run ( updt ) , TensorFlow w i l l run a l l 3 update

s t ep s

updt = [W. as s i gn add (W adder ) ,W2. as s i gn add (W2 adder ) , bv .

a s s i gn add ( bv adder ) , bh . a s s i gn add ( bh adder ) , bh2 . a s s i gn add

( bh2 adder ) ]

#Fi r s t , we t r a i n the model

#i n i t i a l i z e the v a r i a b l e s o f the model

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

s e s s . run ( i n i t )

for epoch in range ( epochs ) :

for i t e r a t i o n in tqdm( range ( i t e r a t i o n s ) ) :

i f d i s t == 0 :

batch = g e t b a t c h f u l l s t a t e ( p truth , binary perms ,

b a t ch s i z e )

else :

batch = get batch2 ( p truth , binary perms , b a t ch s i z e )
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#tr x = song [ i : i+ba t ch s i z e ]

s e s s . run ( [ updt ] , f e e d d i c t={x : batch })
i f ( i t e r a t i o n +1) == i t e r a t i o n s : # Samples from z

VAE out = gibbs sample deep (10 , x ,W,W2, bh , bh2 , bv ) . eval (

s e s s i o n=ses s , f e e d d i c t={x : np . z e r o s ( (

ba tch s i z e samp l ing , v i s i b l e d im ) ) })
for samp l ing batch i in range ( int ( num z samples /

batch s i z e samp l ing −1) ) :
print ( ”Sampling batch ” + str ( samp l ing batch i )+’

o f ’+str ( int ( num z samples / batch s i z e samp l ing

−1) ) )
sample = gibbs sample deep (10 , x ,W,W2, bh , bh2 , bv ) .

eval ( s e s s i o n=ses s , f e e d d i c t={x : np . z e r o s ( (

ba tch s i z e samp l ing , v i s i b l e d im ) ) })
VAE out = np . append (VAE out , sample , ax i s=0)

VAE out binary = VAE out>0.5# Step func t i on f o r VAE

outputs that must be 0 or 1

p gen = get d i s t f rom generated measurements (

VAE out binary , binary perms )#Get d i s t r i b u t i o n o f

measurements

print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p gen ) ) )

p l o t t e r 2 ( p t ruth [ 0 : 1 0 0 ] , p gen [ 0 : 1 0 0 ] , 1 , c ompre s s i on ra t e s chedu l e [

i i ] , d i s t names [ d i s t ] , g e t s t a t e o v e r l a p ( p truth , p gen ) )

Listing C.4: Complex valued RBM

#!/ usr /bin /env python3

# −∗− coding : utf−8 −∗−
”””

Created on Tue Mar 6 22 : 26 : 04 2018

@author : j u s t i n j ud e

COMPLEX RBM IMPLEMENTATION

”””

#https : // arx iv . org /pdf /1703 .05334 . pdf

from f u t u r e import d i v i s i o n

from f u t u r e import p r i n t f u n c t i o n

import numpy as np

import random

import os

import matp lo t l i b . pyplot as p l t

import t en so r f l ow as t f

import os . path

from s c ipy . s t a t s import ortho group
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import s c ipy

import i t e r t o o l s

from s t a t e g en ha rd import ∗
from network too l s import ∗
from s t a t e t o o l s import ∗
from s t a t e g en t ime evo l u t i o n import ∗
from rbm too l s import ∗
import sys

from qut ip import ∗
import numpy as np

import pandas as pd

#import msgpack

import glob

import t en so r f l ow as t f

from t en so r f l ow . python . ops import c on t r o l f l ow op s

from tqdm import tqdm

sys . dont wr i t e bytecode = True

cwd = os . getcwd ( )

# Seed

np . random . seed (0 )

t f . set random seed (0 )

eps = 1e−40
d i s t s =[ ]

d i s t names =[ ]

# l o c a t i o n o f over lap f i l e

s a v e l o c o v e r l a p s = cwd+’ / r e su l t s l a y e r s r andom / over l aps l aye r s random ’

#load random ket s

num qubits = 8 #Number o f qub i t s

rnd s t a t e = qut ip . rand ket (2∗∗ num qubits )

rnd s t a t e = rnd s t a t e . f u l l ( )

p t ruth = np . abs ( r nd s t a t e ) ∗∗2
d i s t s . append ( p truth )

d i s t names . append ( ’Random ’ )

n = 2 # Dimension o f f a c t o r a d i c f o r s t r e l chuk d i s t i r b u t i o n

L = 4 # Sample items f o r s t r e l chuk d i s t i r b u t i o n

param = L∗∗n∗∗2
num qubits = 8 #Number o f qub i t s 12

p truth = g e t h a r d d i s t r i b u t i o n (n , L ,mode = ’ f u l l ’ )

d i s t s . append ( p truth )

d i s t names . append ( ’Hard ’ )

p truth2=g e t p r odu c t d i s t r i b u t i o n ( num qubits )
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print ( p truth2 )

p truth2=p truth2 /np .sum( p truth2 )

d i s t s . append ( p truth2 )

d i s t names . append ( ’ Product ’ )

# Network s t r u c tu r e

num layer s schedu le = np . array ( [ 1 ] ) #Number o f l a y e r s

compre s s i on ra t e s chedu l e = np . array ( [ 0 . 5 , 0 . 2 5 ] )

num params schedule = compre s s i on ra t e s chedu l e ∗(2∗∗ num qubits )#Total params

# Train ing c on f i g

i t e r a t i o n s = 10000 # Number o f t r a i n i n g i t e r a t i o n s

d i s p l a y e r r o r f r e qu en c y= 1000

num z samples = 5000∗2∗∗ num qubits # NUmber o f measurements to samplse from

VAE decoder

sample z f r equency = 10000

ba t ch s i z e = 500 # S i z e o f t r a i n i n g batches

ba t ch s i z e s amp l i ng = 50000 # Batch s i z e f o r sampling

l r = 0.001 #l e a rn i ng ra t e

KLD weight max = 0.85 # Max weight ing f o r KLD warmup https : // arx iv . org /pdf

/1602 .02282 . pdf

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

# Store ove r l ap s

ove r l ap s = np . z e r o s ( ( num params schedule . shape [ 0 ] , num layer s schedu le . shape

[ 0 ] , int ( i t e r a t i o n s / sample z f r equency ) ) ) # Store the best ove r l ap s

obta ined during t r a i n i n g

#overlaps benchmark = np . z e r o s ( num params schedule . shape [ 0 ] ) # Overlap

between ta r g e t s t a t e and maximally mixed ( f l a t ) s t a t e

# Flat d i s t r i b u t i o n f o r benchmarking

p f l a t= g e t un i f o rm d i s t r i b u t i o n ( num qubits )

epochs = 1

v i s i b l e d im = num qubits

# Get p o s s i b l e measurement outcomes

binary perms = get b inary pe rmutat i ons ( num qubits )

#Build Network

VAE out=[ ]

with t f . S e s s i on ( ) as s e s s :

for d i s t in range (0 , p t ruth . shape [ 0 ] ) :

p t ruth = rnd s t a t e

p r e a l = p truth . r e a l ∗∗ 2

p r e a l = p r e a l /np .sum( p r e a l )

p imag = p truth . imag ∗∗ 2
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p imag = p imag/np .sum( p imag )

p truth = d i s t s [ d i s t ]

print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p f l a t ) ) )

p l o t t e r ( p t ruth [ 0 : 1 0 0 ] , p f l a t [ 0 : 1 0 0 ] )

for i i in range ( num params schedule . shape [ 0 ] ) :

v i s i b l e d im = num qubits

num params = num params schedule [ i i ]

num nodes = get node number ( num qubits , 1 , num params ) # Number o f

nodes f o r f i x ed number o f network params

hidden dim = num nodes

print ( ”Hidden Dim : ” , hidden dim )

#REAL PART

xr = t f . p l a c eho lde r ( t f . f l o a t32 , [ None , v i s i b l e d im ] , name = ”xr” )

#p la c eho lde r f o r input

Wr = t f . Var iab le ( t f . random normal ( [ v i s i b l e d im , hidden dim ] , 0 . 01 )

, name = ”Wr” ) #weight matrix between v i s i b l e and hidden

l ay e r

bh = t f . Var iab le ( t f . z e r o s ( [ 1 , hidden dim ] , t f . f l o a t32 , name = ”bh

” ) ) #b ia s vec to r f o r hidden l ay e r

bvr = t f . Var iab le ( t f . z e r o s ( [ 1 , v i s i b l e d im ] , t f . f l o a t32 , name = ”

bvr” ) )#b ia s vec to r f o r v i s i b l e l a y e r

#IMAGINARY PART

Wi = t f . Var iab le ( t f . random normal ( [ v i s i b l e d im , hidden dim ] , 0 . 01 )

, name = ”Wi” ) #weight matrix between v i s i b l e and hidden

l ay e r

bvi = t f . Var iab le ( t f . z e r o s ( [ 1 , v i s i b l e d im ] , t f . f l o a t32 , name = ”

bvi ” ) )#b ia s vec to r f o r v i s i b l e l a y e r

x i = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , v i s i b l e d im ] , name = ” x i ” )

#p la c eho lde r f o r input

xr sample = gibbs sample (1 , xr ,Wr, bh , bvr )

x i sample = gibbs sample (1 , xi ,Wi, bh , bvi ) #sample from RBM using

un i t Gaussian

hr = sample bin ( t f . s igmoid ( t f . matmul ( xr , Wr) + bh) )

h i = sample bin ( t f . s igmoid ( t f . matmul ( xi , Wi) + bh) )

#comp to rea l = t f . r t ( t f . sq ( xr ) + t f . sq ( x i ) )

hr sample = sample bin ( t f . s igmoid ( t f . matmul ( xr sample , Wr) + bh) )

h i sample = sample bin ( t f . s igmoid ( t f . matmul ( xi sample , Wi) + bh) )

#comp to rea l = t f . r t ( t f . sq ( xr sample ) + t f . sq ( x i sample ) )

#Contras t ive Divergence
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s i z e b t = t f . c a s t ( t f . shape ( xr ) [ 0 ] , t f . f l o a t 3 2 )

Wr adder = t f . mul t ip ly ( l r / s i z e b t , t f . subt rac t ( t f . matmul ( t f .

t ranspose ( t f . conj ( xr ) ) , hr ) , t f . matmul ( t f . t ranspose ( t f . conj (

xr sample ) ) , hr sample ) ) )

Wi adder = t f . mul t ip ly ( l r / s i z e b t , t f . subt rac t ( t f . matmul ( t f .

t ranspose ( t f . conj ( x i ) ) , h i ) , t f . matmul ( t f . t ranspose ( t f . conj (

x i sample ) ) , h i sample ) ) )

bvr adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t ( xr ,

xr sample ) , 0 , True ) )

bv i adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t ( xi ,

x i sample ) , 0 , True ) )

bh adder = t f . mul t ip ly ( l r / s i z e b t , t f . reduce sum ( t f . subt rac t ( hr +

hi , hr sample + hi sample ) , 0 , True ) )

#When we do s e s s . run ( updt ) , TensorFlow w i l l run a l l 3 update

s t ep s

updt = [Wr. as s i gn add (Wr adder ) ,Wi . a s s i gn add (Wi adder ) , bvr .

a s s i gn add ( bvr adder ) , bh . a s s i gn add ( bh adder ) , bvi . a s s i gn add

( bv i adder ) ]

#Fi r s t , we t r a i n the model

#i n i t i a l i z e the v a r i a b l e s o f the model

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

s e s s . run ( i n i t )

for epoch in range ( epochs ) :

for i t e r a t i o n in tqdm( range ( i t e r a t i o n s ) ) :

#i f d i s t == 0 :

ba t ch r e a l = g e t b a t c h f u l l s t a t e ( p r ea l , binary perms ,

b a t ch s i z e )

batch imag = g e t b a t c h f u l l s t a t e ( p imag , binary perms ,

b a t ch s i z e )

#e l s e :

#batch = get batch2 ( p truth , binary perms , b a t ch s i z e )

#t r x = song [ i : i+ba t ch s i z e ]

s e s s . run ( [ updt ] , f e e d d i c t={xr : ba tch rea l , x i :

batch imag })
i f ( i t e r a t i o n +1) == i t e r a t i o n s : # Samples from z

s im = gibbs sample (1 , xi ,Wi, bh , bvi ) . eval ( s e s s i o n=ses s ,

f e e d d i c t={x i : np . z e r o s ( ( ba tch s i z e samp l ing ,

v i s i b l e d im ) ) })
s r e = gibbs sample (1 , xr ,Wr, bh , bvr ) . eval ( s e s s i o n=ses s ,

f e e d d i c t={xr : np . z e r o s ( ( ba tch s i z e samp l ing ,

v i s i b l e d im ) ) })
VAE out = np . sq r t ( s im ∗∗2 + s r e ∗∗2)
for samp l ing batch i in range ( int ( num z samples /

batch s i z e samp l ing −1) ) :
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print ( ”Sampling batch ” + str ( samp l ing batch i )+’

o f ’+str ( int ( num z samples / batch s i z e samp l ing

−1) ) )
s im = gibbs sample (1 , xi ,Wi, bh , bvi ) . eval ( s e s s i o n=

ses s , f e e d d i c t={x i : np . z e r o s ( (

ba tch s i z e samp l ing , v i s i b l e d im ) ) })
s r e = gibbs sample (1 , xr ,Wr, bh , bvr ) . eval ( s e s s i o n=

ses s , f e e d d i c t={xr : np . z e r o s ( (

ba tch s i z e samp l ing , v i s i b l e d im ) ) })
out = np . sq r t (np . square ( s im ) + np . square ( s r e ) )

VAE out = np . append (VAE out , out , ax i s=0)

VAE out binary = VAE out>0.5# Step func t i on f o r VAE

outputs that must be 0 or 1

p gen = get d i s t f rom generated measurements (

VAE out binary , binary perms )#Get d i s t r i b u t i o n o f

measurements

print ( ’ Overlap i s : ’ + str ( g e t s t a t e o v e r l a p ( p truth , p gen ) ) )

p l o t t e r 2 ( p t ruth [ 0 : 1 0 0 ] , p gen [ 0 : 1 0 0 ] , 1 , c ompre s s i on ra t e s chedu l e [

i i ] , d i s t names [ d i s t ] , g e t s t a t e o v e r l a p ( p truth , p gen ) )

Listing C.5: RBM Functions

#!/ usr /bin /env python3

# −∗− coding : utf−8 −∗−
”””

Created on Thu Jan 25 12 : 57 : 15 2018

@author : j u s t i n j ud e

RBM FUNCTIONS

”””

import t en so r f l ow as t f

def sample rbm ( probs ) :

#Takes in a vec to r o f p r o b a b i l i t i e s , and r e tu rn s a random vecto r o f 0 s

and 1 s sampled from the input vec to r

return t f . f l o o r ( probs + t f . random normal ( t f . shape ( probs ) , 0 , 1) )

def sample bin ( probs ) :

return t f . f l o o r ( probs + t f . random uniform ( t f . shape ( probs ) , 0 , 1) )

def g ibbs sample (k , x ,W, bh , bv ) :

#Repeatedly sample ( k t imes ) from the v i s i b l e and hidden l ay e r o f the RBM
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de f ined by W, bh , bv

def g i bb s s t ep ( count , k , xk ) :

#Runs a sampling step . The v i s i b l e va lue s s t a r t as xk

hk = sample bin ( t f . s igmoid ( t f . matmul (xk , W) + bh) ) #Forward pass

us ing the v i s i b l e va lue s to sample the hidden va lue s

xk = sample rbm ( t f . s igmoid ( t f . matmul (hk , t f . t ranspose (W) ) + bv ) ) #

Backwards pass us ing the hidden va lue s to sample the v i s i b l e

va lue s

return count+1, k , xk

#Run sampling step f o r k i t e r a t i o n s

ct = t f . constant (0 ) #counter

def c ( ct , k , x ) :

return t f . l e s s ( ct , k )

def body ( ct , k , x ) :

return g i bb s s t ep ( ct , k , x )

[ , , x sample ] = t f . wh i l e l o op ( c , body , [ ct , t f . constant (k ) , x ] )

x sample = t f . s t op g r ad i en t ( x sample )

return x sample

def g ibbs sample deep (k , x ,W,W2, bh , bh2 , bv ) :

#Repeatedly sample ( k t imes ) from the v i s i b l e , hidden l aye r1 and 2 o f

the RBM de f ined by W,W2, bh , bh2 , bv

def g i bb s s t ep ( count , k , xk ) :

#Runs a sampling step . The v i s i b l e va lue s s t a r t as xk

l 1 = sample bin ( t f . s igmoid ( t f . matmul (xk , W) + bh) )

hk = sample bin ( t f . s igmoid ( t f . matmul ( l1 , W2) + bh2 ) ) #Forward pass

us ing the v i s i b l e va lue s to sample the hidden va lue s

back l1 = sample rbm ( t f . s igmoid ( t f . matmul (hk , t f . t ranspose (W2) ) + bh

) )

xk = sample rbm ( t f . s igmoid ( t f . matmul ( back l1 , t f . t ranspose (W) ) + bv ) )

#Backwards pass us ing the hidden va lue s to sample the v i s i b l e

va lue s

return count+1, k , xk

#Run gibbs s t ep s f o r k i t e r a t i o n s

ct = t f . constant (0 ) #counter

def c ( ct , k , x ) :

return t f . l e s s ( ct , k )

def body ( ct , k , x ) :
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return g i bb s s t ep ( ct , k , x )

[ , , x sample ] = t f . wh i l e l o op ( c , body , [ ct , t f . constant (k ) , x ] )

x sample = t f . s t op g r ad i en t ( x sample )

return x sample
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